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Disclaimer 
This report was prepared as an account of work sponsored by an agency of the 

United States Government.  Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights.  Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof.  The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government 
or any agency thereof. 
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Abstract 
 
The “Freedom Car” Initiative announced by the Bush Administration has placed a significant 
emphasis on development of a hydrogen economy in the United States.  While the hydrogen-
fueled fuel-cell vehicle that is the focus of the “Freedom Car” program would rely on 
electrochemical energy conversion, and despite the large amount of resources being devoted to 
its objectives, near-term implementation of hydrogen in the transportation sector is not likely to 
arise from fuel cell cars.  Instead, fuel blending and “hydrogen-assisted” combustion are more 
realizable pathways for wide-scale hydrogen utilization within the next ten years.  Thus, a large 
potential avenue for utilization of hydrogen in transportation applications is through blending 
with natural gas, since there is an existing market for natural-gas vehicles of various classes, and 
since hydrogen can provide a means of achieving even stricter emissions standards.  Another 
potential avenue is through use of hydrogen to "assist" diesel combustion to permit alternate 
combustion strategies that can achieve lower emissions and higher efficiency. 
 
This project focused on developing the underlying fundamental information to support 
technologies that will facilitate the introduction of coal-derived hydrogen into the market.  Two 
paths were envisioned for hydrogen utilization in transportation applications.  One is for 
hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in 
existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable 
avenue to begin using hydrogen in the field.  A second is to use hydrogen to enable alternative 
combustion modes in existing diesel engines, such as homogeneous charge compression ignition, 
to permit enhanced efficiency and reduced emissions. 
 
Thus, this project on hydrogen-assisted combustion encompassed two major objectives:  (1) 
Optimization of hydrogen-natural gas mixture composition and utilization through laboratory 
studies of spark-ignition engine operation on H2-NG and numerical simulation of the impact of 
hydrogen blending on the physical and chemical processes within the engine; and (2) 
Examination of hydrogen-assisted combustion in advanced compression-ignition engine 
processes.  To that end, numerical capabilities were applied to the study of hydrogen assisted 
combustion and experimental facilities were developed to achieve the project objectives.   
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Executive Summary 
 
This project on hydrogen-assisted combustion encompassed two major objectives.  
Optimization of hydrogen-natural gas mixture composition and utilization through 
laboratory studies of spark-ignition engine operation on H2-NG and numerical simulation 
of the impact of hydrogen blending on the physical and chemical processes within the 
engine. Examination of hydrogen-assisted combustion in advanced compression-ignition 
engine processes.  To that end, numerical capabilities are being applied to the study of 
hydrogen assisted combustion and experimental facilities are being developed to achieve 
the project objectives.   
 
During the period of performance, we performed experimental studies of compressed 
natural gas (CNG) and hydrogen-enriched natural gas (HCNG) in a spark ignition engine 
and a field vehicle and performed experimental studies of hydrogen-assisted compression 
ignition combustion in a turbodiesel engine via fumigation of the intake air with 
hydrogen.  The gaseous fuels for both experiments were obtained from the DOE 
sponsored Hydrogen Fueling Station at Penn State which was built by Air Products and 
Chemicals, Inc. and dispenses the HCNG and H2 fuels used in these studies.  A fuel 
delivery system for the engine test stands was designed and built for this program with 
technical guidance from Air Products.  Overall, the key observations regarding HCNG 
combustion are that the role of the hydrogen is to increase the burning rate of CNG, 
which permits significant retardation of spark timing.  However, the impact of the 
hydrogen on spark timing to achieve maximum brake torque (MBT) is no more 
significant that the effect of increasing swirl within the engine.  Overall, the key 
observations regarding H2 on diesel combustion are that thermal efficiency and emissions 
are not strongly affected by the substitution of diesel fuel by fumigated hydrogen, which 
can be seen as a way of displacing diesel fuel usage, but that there is a dramatic increase 
in the relative proportion of NO2 to NO in the NOx emissions from the engine as 
hydrogen substitution is increased. 
 
During the period of performance, numerical methods were developed and applied to 
provide a fundamental understanding of how hydrogen influences the spark-ignition 
combustion of natural gas and the compression ignition combustion of n-heptane.  In 
particular, we have performed calculations examining the flame speed enhancement with 
hydrogen addition to methane, the interaction between an n-heptane spray and a uniform 
mixture of air and hydrogen, and the NOx emissions and the shift between NO and NO2, 
which was observed in the experiments, to examine what chemical reactions are 
responsible for this shift. 
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Approach 
 
The experimental approach to achieving the project objectives involves the application of 
a Ricardo Hydra single cylinder research engine for the SI studies and of a VM Motori 
2.5L turbodiesel engine for the CI studies.  Also, a service van from Penn State’s Office 
of Physical Plant is being used for field vehicle testing and for assessing lubricant 
compatibility with HCNG operation. 

Ricardo Hydra Engine 
 
The Ricardo Hydra engine, a single-cylinder four valves per cylinder SI engine presently 
is configured for port fuel injection of gasoline.  The engine has been outfitted with an 
intake fuel/air mixer to provide CNG and HCNG fueling capabilities.  The engine is 
being used to study the combustion enhancements provided by hydrogen assist. 
 

VM Motori 2.5L Turbodiesel Engine 
 
The VM Motori 2.5L turbodiesel engine is a state-of-the-art electronically controlled 
common rail injection engine, with electronically controlled cooled EGR.  This engine 
represents current technology, passenger car diesel technology.  The engine has been 
instrumented with a multi-cylinder combustion analysis, rail pressure sensing and needle 
lift sensing.  The engine includes an interface to the electronic controls providing the 
ability to change operating parameters on-the-fly. 
 

Numerical Simulations 
 
CHEMKIN (homogeneous reactor models, steady one-dimensional laminar flame 
models); XSenkplot (a graphical postprocessor for CHEMKIN that facilitates the analysis 
of detailed chemical mechanisms); GMTEC (a research unstructured three-dimensional 
time-dependent CFD code for computing in-cylinder aero-thermo-fluids processes); and 
STAR-CD (a commercial unstructured three-dimensional time-dependent CFD code for 
computing in-cylinder aero-thermo-fluids processes). 
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Results 
 
The discussion of results is organized by task, according to the task structure in the 
SOPO.  For the purpose of presenting the overall results from the entire project and 
capturing the entirety of the excellent work done by the group of graduate students who 
have contributed to the project, appendices with the complete theses are included.  For a 
task where one or more students primarily performed their thesis research on that task, a 
brief Executive Summary of key findings is included under the heading of that task along 
with a reference to the appropriate appendix and thesis for the full results from that task.  
Under two tasks (1.1 and 2.3), a completed graduate thesis on the work under that task is 
either in progress (1.1) or the work was not broad enough to encompass an entire 
graduate thesis (2.3).  In these two cases, a complete report is provided within the body of 
the report for that task. 
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Task 1.1 Combustion and Emissions Impacts and Lubricant 
Challenges of HCNG 

 

Experimental 
In Year 1, the work focused on engine and fueling system development for the Ricardo 
Hydra test stand.  In Year 2, construction of the hydrogen fueling system was largely 
completed, a temporary hydrogen delivery system was put in place and some preliminary 
data for hydrogen assisted gasoline combustion were obtained.  In Years 3 and 4, the 
studies of CNG and HCNG combustion were performed. 
 
A 3600 psi glass-wrapped steel storage tank is refueled on campus at the DOE/PSU/Air 
Products hydrogen fueling station.  An Impco gaseous air-fuel mixer has been integrated 
to ensure homogeneous preparation of the air-fuel mixture entering the engine.  
Stoichiometry is controlled with a metering valve inline with a mass flow sensor, 
upstream the mixer.   
 
The gaseous fueling system comprises stainless steel components, including a regulator, 
pressure relief device (PRD), and manual shut off valves.  Fuel flow will be controlled 
from the LabView interface.  When fueling is requested (by the user), a digital circuit is 
powered, opening a solenoid valve to send compressed air to a pneumatic valve at the 
storage tank, allowing fuel to flow.  The storage tank is located outside of the laboratory, 
where pressure will be reduced from 3600 psi to 200 psi prior to entering the building.  A 
PRD downstream the regulator prevents high pressure from entering the building in case 
the regulator fails.  Components inside the building are rated for 5000 psi, for safety.   
 
Electronic, explosion proof hydrogen leak detectors are mounted near regions of the 
fueling system where mechanical connections exist .  Upon detection of a hydrogen leak, 
the digital circuit powers off, preventing fuel flow from the storage vessel. The engine 
ignition is cut as well, but the engine is motored to empty the fuel line.  A fume hood 
located directly above the test stand draws any leaked fuel from the laboratory.      
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Figure 1. HCNG Fueling System Schematic 

 

Ricardo Hydra engine test stand 
The Ricardo Hydra engine test stand configured with advanced control system and 
dynamometer with absorbing and motoring capabilities was acquired for the hydrogen 
assisted combustion project, Figure 2.  The Hydra is a 0.5 L, single-cylinder, 4-valve, 
naturally aspirated, port-injected, spark ignition engine.  The control system allows the 
user independent control of RPM (or torque), load, stoichiometry, and spark timing.   
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Figure 2: Ricardo Hydra Research Engine 

The associated data acquisition system comprises thermocouples, pressure transducers, 
shaft encoder, lambda sensor, mass flow controller, and sensors for in-cylinder flame 
sensing, Figure 3. All are integrated into a LabView PXI system, using a SCXI chassis.  
LabView version 7 was used to create a data monitoring and collection system, complete 
with MFB calculations, and heat release code.  A laminar flow element and plenum 
chamber were integrated for accurate charge airflow measurement. 
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Figure 3: Engine Test Stand Instrumentation 

 
 

Emissions measurement 
The Hydra exhaust is outfitted with a heated canister filter coupled to a heated sample 
line, both temperature controlled to 190ºC, in order to preserve emissions in their gaseous 
state as they travel to analytical equipment.  Emissions analysis was achieved using an 
AVL emissions rack, comprising analyzers for CO, CO2, NOx, HC (low and high) and 
O2, with the ability to verify AFR as well, Figure 4. 
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Figure 4: AVL Emissions Bench 

Speciation of engine exhaust was achieved with a gas chromatograph, calibrated for low 
range HC’s and hydrogen, Figure 5  
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Figure 5: Gas Chromatograph (GC) for HC Speciation of Exhaust Gas 

A thermophoretic sampling unit enables extraction of soot samples from the exhaust 
stream, to provide qualitative information about the morphology of the soot via 
transmission electron microscopy (TEM) imaging of the samples.   
 
The exhaust was routed through a chiller to remove water condensate, and then drawn 
through a DNPH cartridge via vacuum pump, in order to collect samples for analysis with 
high pressure liquid chromatography (HPLC).  This analysis provides concentrations of 
the following oxygenated species: 
 

! formaldehyde ! methacrolein 

! acrolein ! butyral 

! acetaldehyde ! benzal 

! acetone ! valeral 

! propional ! tolual 

! crotonal ! hexanal 

! methylethylketone 
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Components for intake-induced swirl generation 
The Hydra possesses a quiescent combustion chamber.  Components have been fabricated and 
employed to partially or fully block on of the intake ports to generated intake-induced swirl. 
An internally threaded aluminum component was manufactured to press into one of the intake 
ports, to accept components to partially or fully block the intake port.   These blockage 
components are shown in Figure 6.  Figure 7 shows one port opened and one port fully 
blocked.   
 

 
Figure 6: Swirl Components 

   
 

 
Figure 7: Intake Port Blockage Components 
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The Hydra head was tested on a flow bench at General Motor’s Tech Center to quantify swirl 
numbers for the head without blockages, and also for the head with one port fully blocked.   

Flame development instrumentation 
The two devices designed for studying the flame propagation in SI engine have been obtained. 
A head gasket equipped with 6 ion probes (Figure 8) has been designed and fabricated for the 
Hydra engine which enables detecting the flame arrival along the plane of head gasket. Signal 
conditioning is accomplished with a circuitry developed in-house and the signals are 
processed with a high speed multiple channel data acquisition board.  
 
 

Figure 8: Ion Probe Head Gasket 

 

Another in-cylinder flame detector, optical sensor equipped spark plug, has also been obtained 
(Figure 9, Figure 10) which allows the flame detection on the top of the combustion chamber. 
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Figure 9: Fiber Optic Spark Plug 

The signals generated from the ion sensors and fiber optic sensors will be analyzed and 
portrayed via radar graphs, to provide a visual representation of the flame (being sensed) 
within the cylinder.   
 

16



15 

 
Figure 10: Fiber-Optic Spark Plug 

Novel gaseous fueling system 
A gaseous fueling system was designed, fabricated, and employed, according to relevant fuel 
system guidelines.  In order to introduce gaseous natural gas and hydrogen into the engine 
safely, Figure 11.  The system comprises a 3600 psi, glass wrapped steel cylinder with an 80L 
capacity.  The tank comprises manual shut-off valves on each end of the tank.  One valve is 
also outfitted with a fueling receptacle, Figure 12.  The other valve is fitted with quick 
disconnects, to easily and safety detatch the tank from the fueling system, so that the tank can 
be transported to the hydrogen fueling station on campus.  The quick disconnect is attached to 
a hose, which is connected to a break-away line that was installed for safety, to protect the 
system if the tank should be moved without first disconnecting the tank. 
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Figure 11: Gaseous Fuel Storage Tank, 3600 PSI 

The break-away enters a pneumatic valve, which is opened to allow fuel to flow from the tank 
into the building when a solenoid valve is switched on to permit compressed air to flow 
outside to the pneumatic valve.  A pressure regulator sits inline downstream the pneumatic 
valve, and drops the pressure from 3600 psi down to 200 psi so that low-pressure fuel is 
entering the fueling system into the building.  The outlet of the pressure regulator has a 
pressure relief device to ensure low-pressure delivery to the laboratory, in the event that the 
pressure regulator fails or becomes damaged.   
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Figure 12: HCNG Fueling Receptacle 

The pressure of the gaseous fuel is regulated down to 75psi once it reaches the engine test 
stand, and then enters a mass flow controller for accurate mass control and measurement.  A 
vent hood is positioned above the engine, and is outfitted with a hydrogen sensor.   
A schematic of the fueling system is shown in Figure 1. 
 

Experiments: Baseline 
The data collected in this phase of research are generalized into four sets: CNG combustion, 
with and without swirl; HCNG combustion, with and without swirl.  All baseline tests were 
conducted at 2000 RPM.  Stoichiometry and spark timing were swept at a given load for each 
data set.  This process was repeated for 3 different load conditions.  Performance, combustion 
statistics, flame development, and emissions data were measured and calculated. 
 
The Model Based Calibration tool in Matlab was used for design of experiments, in order to 
reduce the number of data points required to portray the trends of various responses from the 
engine, under various conditions.  The preliminary data was used to develop correlations, and 
those correlations were considered in selecting future data points.  
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Results and Discussion 
The following studies were conducted at 1.5 bar BMEP at stoichiometric AFR and MBT 
spark timing without intake induced swirl.  The fueling rates for those conditions were held 
constant as throttle was opened incrementally to vary stoichiometry, and ST adjusted to MBT 
at each new AFR.  The same fueling rates were adopted for the cases where intake-induced 
swirl was introduced via full blockage of one intake port; the same process was employed to 
adjust AFR & MBT timing as described above.  The starting point of 1.5 bar BMEP was used 
in both 2000 RPM and 2750 RPM cases.  
 
Additional tests were conducted at constant spark timing for the 2000 RPM case.  The spark 
timing required to attain MBT at stoichiometric AFR and 1.5 bar BMEP for both non-swirl 
CNG & HCNG cases was held constant as a function of stoichiometry.   
 
The results for each experiment are described in the following sections.  The term quiescent is 
used to describe the engine head without any modifications; this configuration yields no 
intake-induced turbulence, and is denoted in the data label suffix as “nS.”  Swirl is used to 
describe the configuration where one intake port is blocked fully, generating some amount of 
intake-induced swirl, and denoted as “s” in the data label suffix.  (i.e. CNGns, CNGs, 
HCNGns, HCNGs). 
 

Comparison of CNG & HCNG Combustion Characteristics at 2000 RPM, 
MBT Timing. 
Figure 13 shows that hydrogen addition enables retarded spark timing, as expected from the 
results in the literature.  The ability for HCNG to achieve MBT with reduced spark advance 
compared to neat CNG, provides evidence of the increased burn rate of hydrogen compared to 
natural gas.  
 
Figure 14 shows that HCNG can be burned at stoichiometries significantly leaner than CNG, 
before the COV% of IMEP increases to undesirable levels (regarding noise considerations and 
engine wear, etc.).  This data corresponds well with much of the data found in literature 
supporting that hydrogen addition to natural gas extends the lean limit of combustion.  
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 Figure 13:  MBT spark timing shows that the addition of hydrogen to natural gas enables
more retarded spark timings, due to a reduction in ignition delay.   
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 Figure 14: Coefficient of variance as a function of fuel equivalence ratio for CNG and
HCNG combustion without swirl at MBT spark timing. 

While the lean limit is extended with HCNG compared to CNG alone, it is important to note 
that COV% of IMEP in the range of 01.0! " ! 0.6 is greater or the same for HCNG compared 
to CNG (Figure 15)..  This means that the influence of hydrogen on stabilizing combustion is 
evident when the ignition character of CNG is weak, i.e., only under very lean conditions. 
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 Figure 15:  Coefficient of variance as a function of fuel equivalence ratio for CNG and
HCNG combustion without swirl at MBT spark timing, with narrowed scale for COV. 

 
Figure 16 shows that performance enhancements are achieved when adding hydrogen to 
natural gas, and combustion is sustained at leaner stoichiometries than can be achieved with 
natural gas.  That higher torque output is observed with HCNG arises from the delayed spark 
timing, which reduces pumping losses associated with early combustion. 
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 Figure 16: Trends of torque as a function of equivalence ratio show that hydrogen assisted
combustion of natural gas provides ability to sustain combustion performance at more lean
stoichiometry and provides the means to achieve higher output. 

Figure 17 shows that with HCNG the combustion duration is shorter, as a consequence of the 
faster burn rate provided by hydrogen addition. 
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 Figure 17:  Burn duration as a function of fuel equivalence ratio.  The burn duration of
CNG and HCNG is the same at stoichiometric AFR, but is significantly shorter for HCNG
particularly under lean conditions.. 

Figure 18 shows the variation of NOx emissions with stoichiometry for CNG and HCNG and 
displays the well known trend for SI combustion, which includes a peak in NOx emissions 
near stoichiometric (#=1) conditions and falling off rapidly as combustion becomes more and 
more lean. 
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 Figure 18: Nox emissions as a function of fuel equivalence ratio. 
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Effects of Swirl on CNG & HCNG Combustion at 2000 RPM, MBT Timing. 
The previous section showed results that coincided with the general findings in the current 
literature regarding hydrogen assisted combustion of natural gas.  However, the published 
work to date does not attempt to explain the source of the enhancements provided by 
hydrogen, aside from the notion that the diffusivity of hydrogen is greater than that of CNG in 
air.  The aim of this work is to uncover a scientific explanation for the enhancements of CNG 
combustion when hydrogen is added.  
 
Starting with the understanding that the diffusivity of hydrogen in air is greater than that of 
CNG (or methane, for simplicity) in air, and combining this concept with that of the rate of 
combustion is dependent upon the mixedness of the oxidizer and fuel, the effects of 
turbulence on the combustion processes of CNG/air and HCNG/air become important. 
 
Figure 18 shows the factors that influence burn rate.  The set of experiments at 2000 RPM, 
MBT timing account for AFR as stoichiometry is swept for both fuels, both with and without 
intake-induced swirl.  The combustion phasing is accounted for, as MBT timing was met for 
each fuel, in each swirl scenario, at each equivalence ratio.  The mixing is a function of the 
diffusivity of the constituents of air & fuel, the intake temperature, and the swirl.  The level of 
intake-induced swirl is fixed for both CNG and HCNG, but the intake air temperatures may 
vary depending on the day of testing, and the diffusivities clearly change given the fuel.  Heat 
transfer varies with the energy content of the fuel, and energy required to break the fuel 
bonds, the resistance at the spark gap associated with the given air fuel mixture, and the 
composition of the exhaust gases and the relative heat capacities of each.   
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Figure 19: Pictorial view of factors that influence burn rate. 

Heywood showed that burn rate of the reactants increases as a function of engine speed 
[Heywood, 1998].  Additionally, introducing swirl increases the in-cylinder gas velocity, 
hence increasing engine RPM and introducing intake-induced swirl will increases the burn 
rate more than increasing RPM or increasing turbulence alone.   
 
This section provides the results and discussion for engine operation at 2000 RPM with MBT 
spark timing for both CNG and HCNG combustion at various equivalence ratios, with and 
without intake-induced swirl (via complete blockage of one intake port). 
 
Figure 20 shows that spark timing trends as a function of phi for each fuel and swirl condition 
and shows that swirl enables retarded spark timings.  Note that the MBT timing for CNG with 
intake-induced swirl in the stoichiometric range aligns closely with those for HCNG without 
swirl – this shows that (regarding MBT timing) hydrogen supplants swirl for CNG.  This data 
also shows that the swirl effects CNG more significantly than HCNG in terms of enabling 
retarded spark timings, particular for equivalence ratios richer than 0.7.   
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Figure 20: MBT spark timing as a function of equivalence ratio for each fuel in each swirl
scenario. 

 
 
Figure 21 shows the COV% as a function of equivalence ratio for CNG and HCNG without 
and with swirl.  The effect of swirl is to stabilize combustion out to slightly more lean 
combustion conditions for either CNG or HCNG, but that hydrogen addition along permits the 
engine to sustain combustion at far more lean conditions than the addition of swirl. 
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 Figure 21:  Coefficient of variance as a function of fuel equivalence ratio for CNG and
HCNG combustion without and with swirl at MBT spark timing. 

Figure 22 shows how the start of combustion varies with stoichiometry for CNG and HCNG 
without and with swirl.  The start of combustion (at MBT spark timing) is more retarded with 
swirl and for CNG with swirl is similar to that for HCNG without or with swirl.  This is 
evidence that the influence of swirl is as large or larger than the influence of hydrogen 
addition. 
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 Figure 22:  Start of combustion as a function of equivalence ratio for CNG and HCNG
without and with swirl.  The SOC is retarded when swirl is present, for both fuels, but more
significantly so for CNG.  The main improvement for HCNG (with swirl) is in the lean 
range.       

Figure 23 shows combustion duration as a function of stoichiometry for CNG and HCNG 
combustion without and with swirl and indicates that burn duration is decreased with intake-
induced swirl for both CNG & HCNG combustion.  The trend is generally more significant 
for CNG than for HCNG.  Between phi = 0.9 and phi = 0.6, the burn duration for CNG with 
swirl is about the same as for HCNG without swirl.  The fastest burn durations occur for 
HCNG with swirl, and are significantly faster than the other three cases.  At 2000 RPM, 
hydrogen and swirl both contribute to the combustion process in terms of increasing the burn 
rate.  Figure 22 also shows that while swirl shortens the burn duration for CNG as much as 
hydrogen addition does, addition of swirl to CNG does not extend combustion to lean 
conditions in the manner that hydrogen addition does. 
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 Figure 23:  Burn duration (10-90% mass fraction burned) as a function of equivalence ratio
for each fuel with and without the presence of intake-induced swirl.   

Figure 24 shows the behavior of torque as a function of equivalence ratio.  The highest torque 
output achieved is for HCNG with swirl.  HCNG produces more torque than CNG as a 
function of stoichiometry.  And swirl barely improves the torque output for CNG combustion.  
Coupling this data with the burn duration (Figure 23), burn rate alone does not explain the 
torque enhancement for HCNG over CNG, neither does SOC.   
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 Figure 24:  Output torque as a function of equivalence ratio for each fuel and each swirl 
scenario. 

 

33



32 

Comparison of the Combustion Characteristics of CNG & HCNG with 
intake-induced swirl at 2750 RPM, MBT Timing. 
In order to further examine the relative impacts of swirl and hydrogen addition on the 
combustion of CNG, experiments were performed at an elevated engine speed. The SOC 
occurs closer to top dead center when intake-induced swirl is present for each fuel, as depicted 
in Figure 25.  The effect is more dramatic for CNG compared to HCNG.  The trends for both 
fuels with and without swirl are very similar in nature to those for ST, more so than in the 
2000 RPM case. 
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 Figure 25:  Start of combustion as a function of equivalence ratio. 

 
Swirl decreases the combustion duration for both fuels, as shown in Figure 26.  The burn 
duration is basically the same for CNG and HCNG without swirl.  This was not true in the 
2000 RPM case.  It seems that the contribution that hydrogen had on the burn rate of CNG 
(without swirl) is not realized at 2750 RPM.   The trend diverges (for the no swirl cases) as 
CNG nears its lean limit.  Also, the difference between the burn rates at a given phi is less 
significant (with swirl) in this case than for 2000 RPM. 
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 Figure 26: Burn duration (10 to 90% mass fraction burned) as a function of equivalence 
ratio for CNG and HCNG without and with swirl at MBT spark timing. 

 

Comparison of the Combustion Characteristics of CNG & HCNG with 
intake-induced swirl at 2000 RPM, with Constant Spark Timing 
The results in the previous section showed that swirl combined with faster piston speeds 
(higher engine RPM of 2750 compared to 2000) resulted in an overall smaller disparity 
between CNG and HCNG regarding burn rate.  However, those results were obtained using 
MBT spark timing.  In order to fully ascertain the effects of swirl and engine speed (piston 
speed), the affect of combustion phasing should be removed.  Hence, the following studies 
were conducted at constant spark timing as a function of equivalence ratio.  The spark timing 
used for CNG and for HCNG were determined at stoichiometric conditions for each fuel, at a 
common output condition (1.5 bar BMEP).  The spark timing positions (15 CAD BTDC for 
HCNG and 27 CAD BTDC for CNG) were used for both swirl and non-swirl scenarios.  
Figure 27 shows the constant spark timings measured from the ST control circuit.  The testing 
methodology required that the load condition be the same for each fuel, at phi = 1, with no 
intake-induced swirl.  The fueling rate for each fuel was held constant for both the no swirl 
and the intake-induced swirl cases.  
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 Figure 27:  MBT spark timing as a function of equivalence ratio, as determined for the
non-swirl case. 

The start of combustion (SOC) at constant spark timing is influenced by stoichiometry when 
ST is held constant (Figure 28).  These profiles also show that swirl improves SOC for both 
fuels, and suggest that the effect of swirl on SOC is more significant for CNG than for HCNG.   
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 Figure 28:  Start of combustion, for spark timing set at MBT spark timing from the non-
swirl case, as a function of equivalence ratio. 

The data shown in Figure 29 show that swirl increases the heat release-derived fuel burn 
duration for both fuels at constant spark timing.  CNG and HCNG have similar burn rates 
without swirl, indicative that hydrogen alone does not enhance the burn rate at constant spark 
timing.  Recall that the spark timing was chosen based on 1.5 bar BMEP at stoichiometric for 
each fuel without intake-induced swirl.  CNG with swirl burns faster (slightly) than HCNG 
with swirl.  [Note that the 10-90% MFB values  for CNGns & HCNGs at phi = 0.6 are not 
shown but are near 116 CAD]. 
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 Figure 29: Combustion duration , for spark timing set at MBT spark timing from the non-
swirl case, as a function of equivalence ratio.    

 
Swirl improves the start of combustion, but does not increase the burn rate for either fuel.  
Hydrogen both improves the start of combustion and the burn rate compared to both cases 
with CNG.   
 
 
 

High-level examination of the influence of intake-induced swirl and 
hydrogen on the combustion kinetics of CNG (2000 RPM, MBT Timing, 
lean stoichiometries) 
Figure 30 shows that there is a significant difference in MBT timing for CNG with and 
without swirl, and practically no difference for HCNG with and without swirl, in this lean 
stoichiometric range. 
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 Figure 30: Spark timing versus coefficient of variance for CNG and HCNG without and
with swirl with spark timing set to the MBT timing for combustion without swirl.  

Figure 31 shows that CNG without swirl experiences the most significant delay between ST 
and SOC, and that CNG combustion experiences the greatest change with the addition of 
swirl, for this spark timing approach.   
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 Figure 31: Start of combustion for CNG and HCNG without and with swirl with spark 
timing set to the MBT timing for combustion without swirl. 

 
Figure 32 shows that the burn rates for CNG and HCNG are quite similar without swirl, until 
the COV exceeds 25%.  The burn duration is significantly faster for both swirl when swirl is 
present.  HCNG with swirl improves burn rate over CNG with swirl.  This as well as the 
trends in Figure 23 seem to suggest a synergetic behavior when both hydrogen and swirl are 
present. 
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 Figure 32: Combustion duration versus coefficient of variance for CNG and HCNG 
without and with swirl with spark timing set to the MBT timing for combustion without
swirl.  
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Task 1.2 Numerical Simulation of SI Engine Comb. with HCNG 
Fueling 

 

Executive Summary 
In the work under this task, the influence of hydrogen addition to premixed, steady - state, one - 
dimensional methane/air flames under spark ignition engine conditions is discussed. Three basic 
studies were performed: changes in the flame structure due to the change in the hydrogen 
concentration for a fixed equivalence ratio, influence of the diffusion coefficient of hydrogen on 
flame structure and exhaust - gas recirculation. For the first study, in general, there has been an 
earlier occurrence of the reaction zone, earlier and higher peaks for key intermediate species and 
reduction in the NOx with hydrogen enrichment. Intermediate species OH, O and H have been 
considered to be important in the rate of reactions OH + CH

4 
!CH

3 
+ H

2
O and O + CH

4 
!CH

3 
+ 

OH. For the second study, little influence of the low diffusion coefficient of hydrogen on the 
flame has been observed for this configuration. For the third study, it was observed that there has 
been a reduction in the peak temperature, delay in the occurrence of the reaction zone and 
reduction and delayed occurrence in the peaks of key intermediate species with EGR addition. The 
reduction in peak temperature and delay in the occurrence of the reaction zone prevents the 
formation of thermal NO and hence NOx reduces. In this thesis, a computational approach is 
applied to investigate autoignition and NOx emissions for hydrogen-hydrocarbon fuel blends 
with air or air-EGR blends.  It is hypothesized that ignition timing might be controlled via a 
pilot injection of diesel fuel into a premixed hydrogen/air/EGR mixture. 
 
The outcome of this work resulted in the MS Thesis of Saket Priyadarshi, which is included is 
included in this report as Appendix A-1.2 
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Task 1.3 Field Vehicle Instrumentation and Combustion Analysis 
 

Executive Summary 
While hydrogen fuel-cell vehicles have been the focus of recent media attention, near term 
implementation of hydrogen as a combustion enhancer is a more reliable pathway for wide-
scale hydrogen utilization within the next ten years. Through combustion analysis, hydrogen 
addition to natural gas has shown to increase thermal efficiency and reduce CO, NO and 
hydrocarbon emissions (UHC) in studies on stationary test cell engines. On-road vehicle 
studies testing hydrogen-natural gas blends show emissions benefits and increase in fuel 
economy. However, on-road tests lack exhaustive combustion analysis to explain what is 
occurring in the cylinder. In this study, the effect of a 33 percent volumetric blend of 
hydrogen (HCNG) on natural gas combustion was investigated in a 5.4L spark-ignited engine 
in a Ford E-250 van. In-cylinder combustion analyses were performed and untreated exhaust 
emissions were measured at 15 and 30 mph with road loads of 10, 20 and 30 horsepower. 
Hydrogen increased the flame speed reducing time for flame kernel development and 
combustion duration. However, the hotter burn lost more heat to the surroundings and thermal 
efficiency of HCNG was lower than natural gas. Increasing engine speeds magnified 
reduction in combustion duration created by hydrogen. As load on the engine increased, 
hydrogen-influenced reduction on burn time was reduced. Heat and throttling losses reduced 
the thermal efficiency of the combustion. More complete combustion with hydrogen reduced 
carbon based emissions and bulk cylinder temperature increase drove increased NO 
formation. 
 
The outcome of this work resulted in the MS Thesis of Jamie Clark, which is included is 
included in this report as Appendix A-1.3. 
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Task 1.4 Examination of Selective NOx Recirc.(SNR) in HCNG-
Fueled Engines 

 
Under this task, we began preparation of the hardware needed to dispense NO to the intake air 
of the engine test stands, but delayed the start of work while students completed their theses 
and their thesis defenses.  The experimental apparatus was put into place and was ready for 
these experiments in FY08Q4, but the Hydrogen Fueling Station had an equipment failure 
which to date has not been repaired.  Without the station, we could not refill our HCNG tank.  
Thus, this task could not be completed this quarter. 
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Task 2.1 Hydrogen Assisted Combustion Studies in a CI Engine 
 

Executive Summary 
Under this task, experimental studies were performed on the combustion of diesel fuel under 
conventional CI engine operation and under advanced combustion operation, without and with 
the addition of hydrogen to the intake air.  Additional work was performed for comparison 
with the hydrogen addition studies that included addition of dimethyl ether and methane to the 
intake air of the diesel engine to consider the influence of cetane number of the fumigated fuel 
on the behavior of the engine. 
 
First, the effect of hydrogen assisted diesel combustion on conventional and advanced 
combustion modes was investigated on a DDC/VM Motori 2.5L, 4- cylinder, turbocharged, 
common rail, direct injection light-duty diesel engine, with exhaust emission being the main 
focus. Hydrogen was substituted for diesel fuel on a percent energy basis of 0%, 2.5%, 5%, 
7.5%, 10% and 15%. The conventional combustion modes studied consisted of four engine 
combinations of speed and load (1800 rpm at 25% of maximum output, 1800 rpm at 75% of 
maximum output, 3600 rpm at 25% of maximum output, and 3600 rpm at 75% of maximum 
output). A significant retarding of injection timing by the diesel fuel injection timing map in 
the engine’s electronic control unit (ECU) was observed during the increased aspiration of 
hydrogen. The retarding of injection timing resulted in significant emission reductions, 
however, the same emission reductions were achieved without aspirated hydrogen by 
manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion 
was conducted, with the pilot and main injection timings locked, to study the effects caused 
directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest 
increase of NOX emissions and a NO / NO2 trade-off in which NO emissions decreased and 
NO2 emissions increased, with NO2 becoming the dominate NOX component in some 
circumstances. Increased aspiration of hydrogen resulted in PM, and HC emissions which 
fluctuated with speed and load. Predominantly, CO and CO2 decreased with the increase of 
hydrogen. The aspiration of hydrogen into the engine modestly decreased fuel economy due 
to the reduction of oxygen in the cylinder charge. In the advanced combustion portion of the 
study, the engine was operated under a partially-premixed charge compression ignition PCCI 
mode known as high efficiency clean combustion (HECC), in which NOX and PM emissions 
dramatically decreased while fuel economy was maintained. Hydrogen assisted diesel 
combustion was performed while the engine operated in the HECC mode, which resulted in 
emissions and combustion impacts similar to those observed in the conventional combustion 
modes. 
 
Second, The second study investigated the NOx reductions which could be achieved with a 
mixed mode combustion process utilizing a fumigated fuel and a pilot injection of diesel fuel. 
In this research, the fumigated fuel was dimethyl ether (DME) and DME/Methane blends, 
while the pilot injection fuel was ULSD. Several sets of experiments were performed to study 
the ignition of the fumigated fuel, and its impact on the NOx emissions. In the first set of 
experiments, the DME concentration was spanned over a range of 15 to 44% energy 
equivalent of the total fuel requirement. An approximately 20% reduction in NOx emissions 
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was observed up to 35% DME energy equivalent. As the energy equivalent increased above 
35%, the NOx emissions began to increase with the increase in the peak of the high 
temperature heat release (HTHR). While the NOx emissions decreased, there was also a 
significant shift in the NO to NO2 conversion for all DME fumigation test conditions in 
comparison to the baseline diesel cases. For 25% DME energy equivalent, the injection timing 
of the pilot diesel was retarded and a reduction in the NOx emissions was observed. The low 
temperature heat release (LTHR) and the HTHR remained constant in magnitude and timing 
while the injection timing of the pilot diesel was retarded. The peak pressure for the premixed 
and diffusion portions merged, with increasing premixed DME combustion. With retarded 
injection timing, NOx reduction occurred as a result of the decrease in the bulk cylinder 
temperature and in the combustion duration before cylinder quenching from the exhaust 
stroke. In the second set of experiments, the intake air temperature was increased to study the 
impact on NOx and the mixed mode combustion process. While the amount of DME residual 
in the exhaust decreased along with the total hydrocarbon and CO emissions, the NOx 
emissions increased with increasing bulk cylinder temperature. For the speed and load used in 
this experiment, there was enough fuel and compression to combust most of the fuel, yet not 
enough to complete the combustion of the unburned hydrocarbons and CO. While air heating 
shifted the stoichiometry of the fuel and air mixture by reducing the density of air, the heating 
led to increased NOx with reduction in the NO to NO2 conversion. This may indicate that the 
system was above the low temperature range for this conversion to occur. In the third set of 
experiments, a small amount of Methane was introduced into the system to study the impact 
on the cetane number of the fumigated fuel. On a brake specific power basis, the Methane 
addition reduced the NOx emissions more than with only DME, however the NO to NO2 

conversion was lower. NOx emissions were further reduced by retarding the injection timing, 
but increased with increasing intake air temperature. Through the use of the intake air heating, 
it was observed that the ignition of the DME/Methane blend was advanced with a smaller 
LTHR and a higher HTHR. While NOx emissions increased with the increase in bulk cylinder 
temperature, only the NO emissions increased while NO2 remained constant. Gaseous 
emissions analysis showed that the heating caused greater conversion of the Methane and 
DME during combustion. 
 
The primary outcomes of the work under this task resulted in the MS Thesis of Greg Lilik and 
a portion of the PhD Thesis of Elana Chapman, which are included is included in this report 
as Appendix A-2.1.A and Appendix A-2.1.B, respectively.  Dr. Chapman’s thesis included 
two separate studies, organized around a theme of using combustion strategy and fuel 
formulation to reduce NOx emissions. 
 
Addendum 
 
Through the review of the thesis work completed under this task, we determined some follow 
up experiments to perform, specifically in which we removed EGR to more exclusively probe 
the impact of hydrogen.  We also considered the possibility of optimizing the timing of diesel 
injection when hydrogen is being fumigated, which yielded some evidence that at retarded 
injection timing the benefits of hydrogen are more significant than at the normal (baseline 
programming for our engine) injection timing. 
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Also, with our industrial partner, Asemblon, we continue looking at options for incorporating 
direct injection of hydrogen along with the direct injection of diesel fuel.  This may permit 
higher levels of hydrogen utilization.  
 
Below are results from these experiments described above, for hydrogen assist without EGR, 
hydrogen assist with single injection and “optimization” of injection timing when using 
hydrogen assist.  These experiments were performed in collaboration with and with input 
from our partner Asemblon.  We have referred to these tests as Phase 2 (where our DOE 
program plan represented Phase 1) and Test 0 (sticking with intake fumigation with H2). 
Under Phase 2, Test 1 and Test 2 will involve direct injection of hydrogen. 
 
Test 0.1 
 
Hydrogen assisted diesel combustion, without EGR and unbound injection timing 
 
Hydrogen assisted diesel combustion was conducted on the DDC 2.5L at the EMS Energy 
Institute,  without EGR, but with floating injection timing at 1800 at 25% of maximum torque, 
1800 at 75% of maximum torque, 3600 at 25% of maximum torque, and 3600 at 75% of 
maximum torque.  
 
 
Table: Injection timings induced by the addition of fuel energy at 0%, 2.5%, 7.5% and 15% on the energy 

basis.  

H2% Main (ATDC) Pilot (ATDC) Main (ATDC) Pilot (ATDC) Main (ATDC) Pilot (ATDC) Main (ATDC) Pilot (ATDC)
0 2.88 -17.41 -6.15 -38.25 -12.25 -56.78 -13.57 -58.07

2.5 2.88 -17.41 -5.76 -37.27 -12.11 -56.61 -13.57 -58.07
7.5 3.00 -17.30 -3.10 -32.06 -12.05 -56.55 -14.50 -59.00
15 3.11 -17.18 -1.10 -26.40 -11.90 -56.40 -14.60 -59.10

1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%

 
 
The effect of hydrogen aspiration on injection timing shift was most prominent    at 1800 rpm 
at 75% maximum torque.   This is because the injection timing map of the DDC 2.5L was 
programmed to have the most variation at 1800 rpm, which is the speed of the maximum rated 
torque of the engine.  Given so, a small change in fuel quantity for this speed was 
programmed to a have larger steps in timing change.  The screen shot below shows the actual 
injection timing map of the main injection of the DDC 2.5L engine. The horizontal axis of the 
map is engine speed in rpm and the vertical axis is fuel injection volume in mm3. 
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Figure 1: Screen shot of DDC 2.5L engine while operating at 3600 rpm at 75% of torque.  
 

NOX Emissions 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 2.84 5.22 5.35 4.83

2.5 3.04 5.03 5.41 4.96
7.5 3.16 4.19 5.56 5.27
15 3.26 3.65 5.46 5.60

NOX [g/kW.h]
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H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 N/A N/A N/A N/A

2.5 6.79 -3.64 1.19 2.65
7.5 10.79 -21.76 3.87 8.75
15 13.76 -35.38 1.98 14.83

NOX Percent Difference

 
 
NO Emissions 

 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 2.14 5.05 3.25 4.67

2.5 1.74 4.67 2.69 4.56
7.5 1.51 3.77 2.36 4.67
15 1.48 3.27 1.98 4.96

NO [g/kW.h]

 
 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 N/A N/A N/A N/A

2.5 -20.53 -7.70 -18.81 -2.53
7.5 -34.19 -28.90 -31.76 -0.04
15 -36.16 -42.65 -48.22 5.99

NO Percent Difference

 
 
 
NO2 Emissions 

 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 0.70 0.17 2.11 0.16

2.5 1.30 0.36 2.73 0.40
7.5 1.65 0.42 3.21 0.60
15 1.78 0.38 3.47 0.64

NO2 [g/kW.h]

 
 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 N/A N/A N/A N/A

2.5 59.69 71.12 25.75 88.10
7.5 80.58 84.91 41.46 117.32
15 86.66 75.37 49.05 121.54

NO2 Percent Difference
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HC Emissions 

 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 0.80 0.12 1.19 0.23

2.5 0.79 0.10 1.29 0.22
7.5 0.78 0.07 1.30 0.22
15 0.73 0.07 1.31 0.24

HC [g/kW.h]

 
 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 N/A N/A N/A N/A

2.5 -1.36 -21.11 8.06 -4.53
7.5 -2.22 -46.34 9.28 -3.71
15 -9.58 -56.78 10.07 6.21

HC Percent Difference

 
 
CO2 Emissions 

 
 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 2.49 2.32 13.74 0.74

2.5 2.38 2.31 13.47 0.71
7.5 2.22 2.49 12.30 0.66
15 1.88 1.75 11.28 0.51

CO2 [g/kW.h]

 
 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 N/A N/A N/A N/A

2.5 -4.50 -0.58 -1.99 -3.55
7.5 -11.48 7.23 -11.07 -11.68
15 -28.08 -27.93 -19.65 -36.73

CO2 Percent Difference

 
 
 
CO Emissions 

 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 867.54 789.28 1030.97 773.87

2.5 852.33 777.94 1009.32 758.94
7.5 821.94 759.08 982.63 726.33
15 778.98 717.13 910.51 649.78

CO [g/kW.h]
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H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 N/A N/A N/A N/A

2.5 -1.77 -1.45 -2.12 -1.95
7.5 -5.40 -3.90 -4.80 -6.34
15 -10.76 -9.58 -12.41 -17.43

CO Percent Difference

 
 
 
 
Brake specific fuel consumption 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 10.71 8.98 14.25 10.15

2.5 10.79 9.11 14.44 10.16
7.5 11.03 9.42 14.59 10.12
15 11.21 9.65 14.82 9.95

BSFC [g/kW.h]

 
 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 N/A N/A N/A N/A

2.5 0.82 1.42 1.31 0.16
7.5 3.01 4.70 2.36 -0.22
15 4.56 7.16 3.87 -1.98

BSFC Percent Difference

 
 
Particulate emissions  
 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 0.39 0.15 0.49 0.16

2.5 0.38 0.14 0.56 0.15
7.5 0.39 0.21 0.57 0.13
15 0.37 0.25 0.54 0.12

PM [g/kW.h]

 
 

H2% 1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 N/A N/A N/A N/A

2.5 -0.56 -7.66 13.00 -3.71
7.5 0.03 33.79 13.39 -19.30
15 -3.94 51.08 8.08 -30.46

PM Percent Difference

 
 
 
To summarize the data, the 1800 rpm at 75% of maximum torque was the only mode to show 
significant injection timing shift due to hydrogen aspiration.  A significant retardation of 
injection timing resulted in emissions and fuel consumption rates which are typical of late 
injection strategies.  Heat release data, pressure trace data and needle lift data for this Test 0.1 
were recorded and are available, however they are not displayed in this document because 
they are not informative. 
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Test 0.2  
   
Effect of Pilot injection on hydrogen aspiration 
  
This section explains the reasoning being diesel injection optimization for hydrogen aspiration 
being focused on single pulse injection.  Dual pulse diesel injection is the injection strategy 
used for currently manufactured diesel engines.   The use of a pilot injection reduces the rapid 
increase of pressure in the cylinder by adding fuel to the cylinder over a gradual period of 
time with two injections. This strategy reduces engine noise and reduces NOX emissions. 
    
The figure below displays the rate of heat release and needle lift with hydrogen substitution 
spanning from 0% to 50% on an energy basis.  The injection timing was unlocked.   The 
needle lift sensor is inherently noisy at low speed and low load operation, however it can be 
seen that the injection timing was not significantly shifted by hydrogen substitution. The main 
injection peak at 50% hydrogen substitution is noticeably decreased, reflecting a decrease in 
diesel injection.  The significance of this plot is observed in the rate of heat release.  As seen 
in pervious work, the addition of hydrogen via aspiration increases the heat release in the pilot 
injection and decreases the rate of heat release in the main injection.  With the majority of the 
heat release occurring at the early injection timing of the pilot injection, large quantities of 
hydrogen, in essence, act to advance injection timing.  Advanced injection timing is known to 
increase NOx emissions and decrease PM emissions in terms of the NOx-PM trade-off 
associated conventional diesel combustion.   
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Figure 2: Dual injection at 1800 rpm at 25% torque with energy substitution at 0%, 7.5%, 15%, 30% and 

50% on the energy basis. 
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NOX: 

H2% 1800 @ 25%
0 2.84

2.5 3.04
7.5 3.16
10 3.16
15 3.26
30 3.58
50 4.12

NOX [g/kW.h]

  

H2% 1800 @ 25%
0 N/A

2.5 6.79
7.5 10.79
10 10.66
15 13.76
30 23.20
50 36.97

NOX Percent Difference

 
 

H2% 1800 @ 25%
0 2.14

2.5 1.74
7.5 1.51
10 1.45
15 1.48
30 1.66
50 2.61

NO [g/kW.h]

  

H2% 1800 @ 25%
0 N/A

2.5 -20.53
7.5 -34.19
10 -38.24
15 -36.16
30 -24.79
50 20.01

NO Percent Difference

 
 

H2% 1800 @ 25%
0 0.70

2.5 1.30
7.5 1.65
10 1.71
15 1.78
30 1.92
50 1.51

NO2 [g/kW.h]

  

H2% 1800 @ 25%
0 N/A

2.5 59.69
7.5 80.58
10 83.44
15 86.66
30 92.81
50 73.29

NO2 Percent Difference

 
 
 

H2% 1800 @ 25%
0 0.80

2.5 0.79
7.5 0.78
10 0.76
15 0.73
30 0.63
50 0.62

HC [g/kW.h]

  

H2% 1800 @ 25%
0 N/A

2.5 -1.36
7.5 -2.22
10 -4.54
15 -9.58
30 -23.18
50 -25.91

HC Percent Difference

 
 

H2% 1800 @ 25%
0 2.49

2.5 2.38
7.5 2.22
10 2.11
15 1.88
30 1.22
50 0.58

CO [g/kW.h]

  

H2% 1800 @ 25%
0 N/A

2.5 -4.50
7.5 -11.48
10 -16.37
15 -28.08
30 -68.57
50 -124.67

CO Percent Difference
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H2% 1800 @ 25%
0 867.54

2.5 852.33
7.5 821.94
10 799.25
15 778.98
30 647.63
50 414.56

CO2 [g/kW.h]

  

H2% 1800 @ 25%
0 N/A

2.5 -1.77
7.5 -5.40
10 -8.19
15 -10.76
30 -29.03
50 -70.66

CO2 Percent Difference

 
 

H2% 1800 @ 25%
0 10.71

2.5 10.79
7.5 11.03
10 10.96
15 11.21
30 11.29
50 10.76

BSFC [g/kW.h]

  

H2% 1800 @ 25%
0 N/A

2.5 0.82
7.5 3.01
10 2.32
15 4.56
30 5.28
50 0.55

BSFC Percent Difference

 
 

H2% 1800 @ 25%
0 0.00

2.5 0.01
7.5 0.03
10 0.04
15 0.06
30 0.12
50 0.21

H2 Flow Rate [g/s]

 
 
 

In summary, dual diesel injection strategies resulted in an advancement of the rate of heat 
release which negatively effected NOx emissions. Fuel efficiency is observed to be reduced 
with the advancement of heat release, due to early combustion which works against the 
compression stroke of the engine. An NO-NO2 shift was observed with an increase of 
hydrogen from 2.5% to 30%.   At 50% hydrogen substitution an anomaly occurs where the 
NO-NO2 shift did not occur and fuel efficiency returned to near base levels.   The anomaly 
could indicate that 50% hydrogen had induced the engine to operate in an advance 
combustion mode.  Addition data points are required to verify the trend. 
  
In this data set, carbon emissions of incomplete combustion (CO and HC) are observed to 
dramatically decrease with the increased addition of hydrogen.  This occurred for two 
plausible reasons: a decrease of carbon fuel and an increased residence time for complete 
combustion of fuel.  However, it should be noted that CO and HC are less worrisome diesel 
emissions, as they can be removed in after treatment.  
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Single injection locked at default injection timing 

 
In further exploration, large quantities of hydrogen were aspirated into the engine at 1800 rpm 
and 25% of maximum torque at the default single injection timing given by the engines ESU.   
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Figure 3:  Rate of Heat Release and Needle lift for 1800 rpm at 25% of torque with 0% 25% and 50% 

hydrogen substitution on the energy basis 
 

H2% 1800 @ 25%
0 4.44
25 4.79
50 4.27

NOX [g/kW.h]

 

H2% 1800 @ 25%
0 N/A
25 7.44
50 -4.07

NOX Percent Difference

 
 

H2% 1800 @ 25%
0 3.09
25 2.47
50 2.52

NO [g/kW.h]

 

H2% 1800 @ 25%
0 N/A
25 -22.26
50 -20.49

NO Percent Difference
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H2% 1800 @ 25%
0 1.35
25 2.31
50 1.75

NO2 [g/kW.h]

 

H2% 1800 @ 25%
0 N/A
25 52.56
50 25.66

NO2 Percent Difference

 
 

H2% 1800 @ 25%
0 1.49
50 0.75

HC [g/kW.h]

 

H2% 1800 @ 25%
0 N/A
50 -65.52

HC Percent Difference

 
 

H2% 1800 @ 25%
0 5.20
50 1.48

CO [g/kW.h]

 

H2% 1800 @ 25%
0 N/A
50 -111.30

CO Percent Difference

 
 

H2% 1800 @ 25%
0 866.38
50 436.47

CO2 [g/kW.h]

  

H2% 1800 @ 25%
0 N/A
50 -66.00

CO2 Percent Difference

 
 
 

H2% 1800 @ 25%
0 10.67

25 11.17
50 10.91

BSFC [g/kW.h]

 

H2% 1800 @ 25%
0 N/A
25 4.53
50 2.21

BSFC Percent Difference

 
 

In summary, NOx emissions of the single injection strategy are noticeably lower than that of 
dual injection strategy when utilizing hydrogen aspiration. The aspiration of 50% hydrogen 
seems to induce the engine to operate in an advanced combustion mode.   NOx emissions at 
25% hydrogen increased, but at 50% hydrogen were observed to modestly decrease. Fuel 
efficiency was also observed to recover at 50% hydrogen.  In this test set, the aspiration of 
large quantities of hydrogen was seen to lower emissions from incomplete combustion, 
though slightly less then that observed during dual injection.  
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Single injection optimization for hydrogen assisted diesel combustion 
 

The original test matrix of this experiment compared the gaseous emissions observed from an 
array of injection timings with and without hydrogen.  During testing the matrix was 
expanded to include increased quantities of hydrogen at injection timing where hydrogen 
induced a reduction in NOx.  The default injection timing of the engine with single engine at 
1800 rpm and 75% of maximum torque is -7.5º ATDC.  Injection timing was not significantly 
advanced to an early timing, because doing so would cause combustion before top-dead-
center which is damaging to the engine and reduces fuel efficiency.  

 

ATDC 0% H2 7.5% H2 15% H2 25% H2
-10.5 6.19 6.15

-9 5.71 5.73
-7.5 5.34 5.35
-3 4.43 4.36 4.38
1 3.72 3.66 3.54 3.16
4 3.39 3.31 3.20 2.87

NOX [g/kw.h]

 

ATDC 0% H2 7.5% H2 15% H2 25% H2
-10.5 N/A -0.64

-9 N/A 0.39
-7.5 N/A 0.21
-3 N/A -1.61 -1.08
1 N/A -1.53 -4.84 -16.41
4 N/A -2.36 -5.59 -16.66

NOX Percent Difference

 
 

ATDC 0% H2 7.5% H2 15% H2 25% H2
-10.5 5.92 5.61

-9 5.49 5.21
-7.5 5.14 4.87
-3 4.32 3.98 3.95
1 3.62 3.39 3.19 2.86
4 3.28 3.10 2.91 2.60

NO [g/kw.h]

 

ATDC 0% H2 7.5% H2 15% H2 25% H2
-10.5 N/A -5.37

-9 N/A -5.21
-7.5 N/A -5.40
-3 N/A -8.26 -8.89
1 N/A -6.52 -12.61 -23.20
4 N/A -5.67 -11.96 -23.38

NO Percent Difference

 
 

ATDC 0% H2 7.5% H2 15% H2 25% H2
10.5 0.27 0.54

9 0.22 0.52
7.5 0.20 0.48
3 0.11 0.38 0.43
-1 0.11 0.28 0.36 0.29
-4 0.10 0.21 0.29 0.27

NO2 [g/kw.h]

 

ATDC 0% H2 7.5% H2 15% H2 25% H2
10.5 N/A 66.67

9 N/A 81.47
7.5 N/A 82.08
3 N/A 111.52 119.46
-1 N/A 89.85 109.11 94.16
-4 N/A 66.18 94.90 89.28

NO2 Percent Difference

 
 

ATDC 0% H2 7.5% H2 15% H2 25% H2
10.5 8.90 9.22

9 8.92 8.99
7.5 8.88 9.02
3 9.01 9.21 9.49
-1 9.39 9.51 9.67 9.77
-4 9.72 9.83 10.10 10.13

BSFC [g/kw.h]

 

ATDC 0% H2 7.5% H2 15% H2 25% H2
10.5 N/A 3.48

9 N/A 0.74
7.5 N/A 1.63
3 N/A 2.20 5.13
-1 N/A 1.34 2.94 4.00
-4 N/A 1.11 3.84 4.10

BSFC Percent Difference
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ATDC 0% H2 7.5% H2 15% H2 25% H2
10.5 792.40 747.13

9 794.47 746.77
7.5 795.97 747.27
3 800.89 765.46 716.56
-1 830.67 792.68 743.72 645.60
-4 859.68 811.67 768.51 677.54

CO2 [g/kw.h]

 

ATDC 0% H2 7.5% H2 15% H2 25% H2
10.5 N/A -5.88

9 N/A -6.19
7.5 N/A -6.31
3 N/A -4.52 -11.11
-1 N/A -4.68 -11.05 -25.07
-4 N/A -5.74 -11.20 -23.70

CO2 Percent Difference

 
 

ATDC 0% H2 7.5% H2 15% H2 25% H2
10.5 3.75 3.92

9 3.10 2.70
7.5 2.17 1.89
3 0.57 0.53 0.52
-1 0.57 0.59 0.61 0.71
-4 1.00 0.97 0.99 1.02

CO [g/kw.h]

 

ATDC 0% H2 7.5% H2 15% H2 25% H2
10.5 N/A 4.39

9 N/A -14.04
7.5 N/A -14.06
3 N/A -6.54 -7.91
-1 N/A 4.54 8.27 22.74
-4 N/A -3.20 -1.86 1.58

CO Percent Difference

 
 

ATDC 0% H2 7.5% H2 15% H2 25% H2
10.5 0.09 0.08

9 0.09 0.08
7.5 0.10 0.08
3 0.10 0.08 0.07
-1 0.09 0.08 0.06 0.06
-4 0.09 0.07 0.06 0.05

HC [g/kw.h]

 

ATDC 0% H2 7.5% H2 15% H2 25% H2
10.5 N/A -12.76

9 N/A -16.28
7.5 N/A -20.74
3 N/A -18.66 -36.07
-1 N/A -15.92 -41.13 -44.19
-4 N/A -20.34 -34.96 -50.54

HC Percent Difference
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Figure 4:  Rate of Heat Release and Needle lift for 1800 rpm at 75% of torque with 0%, 7.5, 15% and 25% 
hydrogen substitution on the energy basis at a locked injection timing of 4º ATDC. 
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Figure 5:  Rate of Heat Release and Needle lift for 1800 rpm at 75% of torque 7.5% hydrogen substitution 
on the energy basis at injection timings of -10.5º ATDC, -9º ATDC, -7.5º ATDC, -3º ATDC, 1º ATDC and 

4º ATDC. 
 
 

In summary, a single pulse injection strategy coupled with early injection produced the lowest 
observed emissions from hydrogen aspiration. With this strategy a notable reduction of NOx 
emissions was observed, along with significant reduction in the other emissions.  However, a 
slight fuel efficiency penalty was observed with hydrogen aspiration as the injection timing 
was shifted away from the optimum heat release position near top-dead-center. 
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Task 2.2 Simulation of HCCI-SCCI Combustion 
 

Executive Summary 
In this task, a computational approach is applied to investigate autoignition and NOx 
emissions for hydrogen-hydrocarbon fuel blends with air or air-EGR blends.  It is 
hypothesized that ignition timing might be controlled via a pilot injection of diesel fuel into a 
premixed hydrogen/air/EGR mixture. 
 
Two levels of modeling are applied:  a zero-dimensional time-dependant reactor model, and a 
three-dimensional time-dependant computational fluid dynamics (CFD) model.  Because 
thermochemistry plays a crucial role in HCCI autoignition and NOx emissions, significant 
effort has been devoted to selection and validation of the chemical mechanisms for 
representative single-component hydrocarbon fuels and for NOx formation. 
 
The primary outcome of this work resulted in the MS Thesis of Bryan Nese, which is included 
is included in this report as Appendix A-2.2 
 
In continuing work since the completion of the work by Bryan Nese, CFD runs have been 
made to explore the effect of H2 substitution on engine-out NO and NO2 levels. Six cases 
were run with 0% to 15% H2: 1800 r/min, 25% peak load; 1800 r/min, 75% peak load; 3600 
r/min, 25% peak load; 3600 r/min, 75% peak load; 1800 r/min, 25% peak load, LTC mode; 
and 1800 r/min, 25% peak load, HECC mode. Detailed geometry and fuel-injector 
information were not available for the experimental engine, so there are considerable 
differences between the experimental engine configuration and the modeled engine 
configuration. Nevertheless, the computed percentage changes in NO and NO2 with H2 
addition match the experimentally measured changes quite well for the two light-load, 
conventional-diesel cases. Quantitative agreement is not as good for the other cases. The CFD 
results show increasing levels of in-cylinder HO2 with increasing H2.  This had been 
hypothesized to explain the observed decrease in NO and increase in NO2 with increasing H2. 
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Task 2.3 Examination of SNR during H2-Assisted Diesel 
Combustion 

 
Under this task, we dispensed NO to the intake air of the engine test stand, using the same 
injection point as used for the hydrogen.  Below is a summary of our observations.  The 
guiding measurements for this work are found in several SAE papers, two by Daimler Benz 
(982592 and 982593) and a later paper by our group (SAE 2006-01-3369).  In particular, for 
diesel combustion we observed the following results in the past work. 

 
(from SAE 2006-01-3369) 

 
Selective NOX Recirculation (SNR) was conducted at the EMS Energy Institute’s combustion 
lab on a highly instrumented DDC 2.5L, common rail, diesel engine in the presence of 
hydrogen assisted diesel combustion.  Chemically pure (99%) NO was delivered from 500 psi 
lab bottles and was aspirated into the intake of the engine, post inter-cooler at 0, 0.0005, 
0.001, 0.005 and 0.01 NO/Air molar ratios.  The molar ratios were based on previous work 
conducted by Flynn at the same facilities 1.  The upper limit of the molar ratio was based on 
the calibration span gas and ECO-Physics NOX analyzer which were limited to 4800ppm.  A 
manifold of four Matheson rotameters were used to measure the required flow rate of NO.  
The given molar ratios NO/Air were tested at 0% and 7.5% hydrogen substitution on the 
energy basis, which was likewise aspirated into the engine post intercooler, as used in 
previous studies2.  The injection time of the pilot and main injection were electronically fixed 
to the base condition injection timing, to limit the effect of additional variables.  Testing was 
conducted at 1800 rpm at 25% and 75% of maximum torque.  
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Table: Testing matrix 

0% H2 7.5% H2 0% H2 7.5% H2
0

0.0005
0.001
0.005
0.01

1800rpm @ 25% 1800rpm @ 75%
NO/Air (Molar Ratio)

 
 

In the literature, the effectiveness of SNR is calculated based on destruction percent of the 
intake and exhaust, which is calculated by 1: 
 
       (Baseline NO Emission)+[Injected NO*(Nair/Ntotal)]–(NO Emission Output)*100 
 Destruction(%) =  

                    [Injected NO*(Nair/Ntotal)] 
 
where Nair, and Ntotal are the number of moles of air and the total number of moles of products 
consecutively. 
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Figure 7: NO Destruction (%) vs. NO/Air (molar Ratio) with 0% and 7.5% hydrogen substation on the 

energy basis at 1800 rpm at 25% and 75% of maximum output. 
The base conditions without hydrogen yield NO destruction % similar to that produced by 
Flynn for the same NO/Air molar ratios 1. Hydrogen increased the percent of NO destruction 
in both high load and low load conditions. At the lower NO/Air molar ratios tested, hydrogen 
was observed to have a greater increase of percent of NO destruction. 
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Table: Gaseous exhaust emissions and brake specific energy consumption for 1800 rpm at 25% maximum 
torque with 0% hydrogen substitution on the energy bases, for 0, 0.0005, 0.001, 0.005 and 0.01 NO/Air 

molar ratios. 
NO/Air Ex. NOx Ex. NO Ex. NO2 Ex. THC Ex. CO Ex. CO2 Ex. O2 BSFC

 (Molar Ratio) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (MJ/kW.h)
0 2.94 2.34 0.60 0.76 2.34 836 775 10.85

0.0005 6.46 5.57 0.89 0.72 1.85 839 779 10.77
0.001 10.58 9.58 1.00 0.75 1.80 826 763 10.90
0.005 38.87 36.40 2.47 0.83 1.83 817 761 10.69
0.01 58.80 54.25 4.55 0.87 2.30 814 769 10.77  

 
Table: Gaseous exhaust emissions and brake specific energy consumption for 1800 rpm at 25% maximum 
torque with 7.5% hydrogen substitution on the energy bases, for 0, 0.0005, 0.001, 0.005 and 0.01 NO/Air 

molar ratios. 
NO/Air Ex. NOx Ex. NO Ex. NO2 Ex. THC Ex. CO Ex. CO2 Ex. O2 BSFC

 (Molar Ratio) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (MJ/kW.h)
0 3.21 1.63 1.58 0.92 2.05 771 753 11.00

0.0005 6.82 3.74 3.08 0.81 1.73 778 746 11.01
0.001 11.58 7.82 3.76 0.78 1.64 775 742 10.87
0.005 38.85 33.72 5.12 0.84 1.54 766 736 10.95
0.01 57.30 47.63 9.67 1.09 1.98 765 739 10.97  

At low load, an increase in NOX was observed for both the base and hydrogen cases with 
increasing NO/Air molar ratio. Slight increase of NOX and a NO to NO2 was observed with 
the introduction of hydrogen, as seen in previous work2. THC and CO emissions fluctuated 
with increasing NO/Air molar ratios. These fluctuation in emissions correspond to the 
fluctuations observed in the start of combustion (SOC), given in the apparent rate of heat 
release plots below. An early start of combustion results in lowered THC and CO emissions 
and a delayed SOC results in increased emissions.  The same trend was observed for BSFC.  
The emission effects caused by hydrogen are comparable to base operation and reflect 
observations made in previous work 2. 
 

Table: Gaseous exhaust emissions and brake specific energy consumption for 1800 rpm at 75% maximum 
torque with 0% hydrogen substitution on the energy bases, for 0, 0.0005, 0.001, 0.005 and 0.01 NO/Air 

molar ratios. 
NO/Air Ex. NOx Ex. NO Ex. NO2 Ex. THC Ex. CO Ex. CO2 Ex. O2 BSFC

 (Molar Ratio) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (MJ/kW.h)
0 6.05 5.66 0.39 0.11 1.87 753 166 8.93

0.0005 6.75 6.61 0.14 0.10 2.51 758 165 9.11
0.001 7.83 7.66 0.17 0.09 2.50 755 163 9.00
0.005 14.70 14.21 0.49 0.10 2.79 751 165 8.99
0.01 23.34 22.04 1.30 0.11 2.13 743 169 8.93  

Table: Gaseous exhaust emissions and brake specific energy consumption for 1800 rpm at 75% maximum 
torque with 7.5% hydrogen substitution on the energy bases, for 0, 0.0005, 0.001, 0.005 and 0.01 NO/Air 

molar ratios. 
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NO/Air Ex. NOx Ex. NO Ex. NO2 Ex. THC Ex. CO Ex. CO2 Ex. O2 BSFC
 (Molar Ratio) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (g/kW.h) (MJ/kW.h)

0 5.72 5.32 0.40 0.07 3.44 722 154 9.29
0.0005 6.60 6.15 0.44 0.07 4.24 727 155 9.25
0.001 7.59 7.02 0.57 0.07 4.48 722 153 9.35
0.005 14.74 13.60 1.14 0.08 4.25 715 154 9.35
0.01 23.64 21.76 1.88 0.09 2.76 696 158 9.14  

At high loads, the THC and CO emissions fluctuations were the reverse of that observed at 
low loads with increasing NO/Air molar ratios.  All other effects are similar to those observed 
for low load operations. 
 
As mentioned earlier, fluctuations in the apparent rate of heat release with increase NO/Air 
molar ratio were observed and were unexpected. The plots below for the low load and high 
load cases with and without hydrogen, all reflect the same trend in SOC per given NO/Air 
molar ratios.  The SOC and timing of the maximum pilot heat release of each NO/Air molar 
ratio are consistent for the multiple trace samples taken for each mode.  However, the 
maximum heat release of the pilot was observed to vary greatly per trace of a given mode.  
Thus, during SNR, the magnitude of the pressure peaks fluctuations,  was also represented in 
high coefficient of variance of IMEP. 
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Figure 8: 1800 rpm at 25% of maximum torque with 0% hydrogen on the energy basis 
 
 
Table: Key timing and parameters for 1800 rpm at 25% maximum torque with 0% hydrogen substitution 

on the energy bases, for 0, 0.0005, 0.001, 0.005 and 0.01 NO/Air molar ratios. 
NO/Air Destruction Incr. of NOx Pilot Inj. SOC Pilot Max. RORH Pilot Max. RORH Pilot Inj. Delay

 (Molar Ratio) (%) (%) (BTDC) (BTDC) (J/degree) (BTDC) (degree)
0 1 199.8 -17.41 -8.37 41.88 -2.50 9.04

0.0005 0.14 44.1 -17.41 -8.38 41.93 -3.20 9.03
0.001 0.15 14.0 -17.41 -8.53 40.17 -3.90 8.88
0.005 0.17 -13.4 -17.41 -8.36 38.86 -2.80 9.05
0.01 0.16 -15.7 -17.41 -8.36 30.01 -1.10 9.05  
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Figure 9: 1800 rpm at 25% of maximum torque with 7.5% hydrogen on the energy basis 
 
 

Table: Key timing and parameters for 1800 rpm at 25% maximum torque with 7.5% hydrogen 
substitution on the energy bases, for 0, 0.0005, 0.001, 0.005 and 0.01 NO/Air molar ratios. 

NO/Air Destruction Incr. of NOx Pilot Inj. SOC Pilot Max. RORH Pilot Max. RORH Pilot Inj. Delay
 (Molar Ratio) (%) (%) (BTDC) (BTDC) (J/degree) (BTDC) (degree)

0 1.00 194.1 -17.41 -7.99 41.5 -2.45 9.42
0.0005 0.35 49.6 -17.41 -8.4 41.7 -3.40 9.01
0.001 0.27 15.2 -17.41 -8.52 40.3 -3.90 8.89
0.005 0.19 -13.3 -17.41 -8.37 37.7 -3.00 9.04
0.01 0.23 -19.8 -17.41 -7.98 36.9 -1.30 9.43  
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Figure 10: 1800 rpm at 75% of maximum torque with 0% hydrogen on the energy basis 
 
 

Table: Key timing and parameters for 1800 rpm at 75% maximum torque with 7.5% hydrogen 
substitution on the energy bases, for 0, 0.0005, 0.001, 0.005 and 0.01 NO/Air molar ratios. 

NO/Air Destruction Incr. of NOx Pilot Inj. SOC Pilot Max. RORH Pilot Max. RORH Pilot Inj. Delay
 (Molar Ratio) (%) (%) (BTDC) (BTDC) (J/degree) (BTDC) (degree)

0 1 197.6 -38.3 -23.52 14.82 -15.40 14.78
0.0005 0.43 115.5 -38.3 -24.034 19.67 -16.50 14.266
0.001 0.46 62.5 -38.3 -23.74 24.83 -16.20 14.56
0.005 0.51 -29.2 -38.3 -19.73 37.01 -14.30 18.57
0.01 0.48 -46.2 -38.3 -14.92 27.92 -10.20 23.38  
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Figure 11: 1800 rpm at 75% of maximum torque with 7.5% hydrogen on the energy basis 
 

Table: Key timing and parameters for 1800 rpm at 75% maximum torque with 7.5% hydrogen 
substitution on the energy bases, for 0, 0.0005, 0.001, 0.005 and 0.01 NO/Air molar ratios. 

NO/Air Destruction Incr. of NOx Pilot Inj. SOC Pilot Max. RORH Pilot Max. RORH Pilot Inj. Delay
 (Molar Ratio) (%) (%) (BTDC) (BTDC) (J/degree) (BTDC) (degree)

0 1.00 194.9 -38.3 -23.106 18.49 -15.40 15.194
0.0005 0.46 112.2 -38.3 -24.04 25.7 -16.50 14.26
0.001 0.54 58.5 -38.3 -23.92 29.72 -16.20 14.38
0.005 0.51 -26.9 -38.3 -19.79 54.8 -14.90 18.51
0.01 0.48 -44.7 -38.3 -14.95 38.86 -10.70 23.35  

 
 
The non linear progression of SOC timing with increasing NO/Air molar ratios is an 
interesting effect that warrants further investigation.  SNR with a single pulse injection would 
be the next logical step in studying the effect of NO on SOC.  
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Conclusions and Milestones 
 

Milestones 
For FY08 quarter #4 the chief milestone was: 

 
Complete examination of impact of hydrogen addition on selective NOx 
recirculation (SNR) in SI combustion with HCNG. 

 
This planned milestone was not completed, due to delays in getting the compressed cylinders 
of pure NO and then by the failure of the Hydrogen Fuel Station at Penn State, which 
prevented refilling of our fuel tank with HCNG. 

 
However, all other tasks were completed as outlined in the original project plan. 

 
Conclusions 
The chief overall conclusions to be drawn from the body of work presented in this report are 
as follows: 
 

1. Hydrogen promotes the enhancement of burning rate and flame speed in the SI 
combustion of natural gas, and stabilizes combustion at the lean limit of combustion 
thereby broadening the equivalence ratio range over which an SI engine can be 
operated. 

2. With proper choice of spark timing to account for the faster burn rate and shorter 
combustion duration (i.e., with spark timing retard), emissions and performance 
benefits relative to conventional natural gas combustion can be realized. 

3. Hydrogen assisted diesel combustion does not provide any significant improvement in 
emissions or efficiency, in sharp contrast to many unfounded claims made by 
commercial entities promoting the use of hydrogen “boosting.”  Even attempts to 
optimize the combustion process for the presence of hydrogen do little to improve 
emissions or efficiency. 

4. However, hydrogen assisted combustion can displace significant amounts of diesel 
fuel usage with little or no penalty, in these tests up to as much as 15% substitution on 
an energy basis across the full speed and load range.  The only anomalous effect is a 
sharp rise in the percentage of NO2 in the total NOx emissions from the engine. 
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ABSTRACT 

In this study, the influence of hydrogen addition to premixed, steady - state, one - 

dimensional methane/air flames under spark ignition engine conditions is discussed. 

Three basic studies were performed: changes in the flame structure due to the change in 

the hydrogen concentration for a fixed equivalence ratio, influence of the diffusion 

coefficient of hydrogen on flame structure and exhaust - gas recirculation. For the first 

study, in general, there has been an earlier occurrence of the reaction zone, earlier and 

higher peaks for key intermediate species and reduction in the NOx with hydrogen 

enrichment. Intermediate species OH, O and H have been considered to be important in 

the rate of reactions OH + CH4 ! CH3 + H2O and O + CH4 ! CH3 + OH.  For the 

second study, little influence of the low diffusion coefficient of hydrogen on the flame 

has been observed for this configuration. For the third study, it was observed that there 

has been a reduction in the peak temperature, delay in the occurrence of the reaction zone 

and reduction and delayed occurrence in the peaks of key intermediate species with EGR 

addition. The reduction in peak temperature and delay in the occurrence of the reaction 

zone prevents the formation of thermal NO and hence NOx reduces. 
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Chapter 1 
 

Introduction 

1.1 Background 

Hydrocarbon - based fuels such as gasoline, diesel and natural gas are important 

sources of energy. But these resources are limited in quantity on earth. Moreover these 

energy sources are a major source for the release of pollutants. Some of the pollutants are 

CO2, NO, NO2, SO2 and particulate matter. CO2 is a green house gas that leads to global 

warming and associated complexities. SO2 causes acid rain. NO and NO2 lead to 

formation of photochemical smog. In addition to these particulate matter can lead to 

different respiratory problems. A potential solution for these pollutants is to replace 

carbon - based fuels with alternatives and hydrogen is an important fuel in this respect. 

An important source of mechanical power for transportation and other applications is the 

internal combustion (IC) engine. Hydrogen can be accommodated in IC engines with 

relatively modest modifications. Natural gas typically contains more than 95% CH4 and it 

is considered to be an important alternative to gasoline and diesel fuel as it is very 

abundant in quantity and not expensive. Natural gas also can be used in existing IC 

engines with little modification as the energy content of natural gas is similar to that of 

other hydrocarbon fuels. 

However, there are important issues involved with the use of hydrogen. Hydrogen 

has very low mass density and the energy per unit mole for hydrogen is much lower 
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compared with hydrocarbon fuels. To prevent energy loss from an IC engine, the size of 

the engine has to be increased significantly. This problem can be countered with boosting 

(e.g. turbo charging). Hydrogen is also very expensive. The most economical method of 

hydrogen production currently is 2.2 times more expensive than the cheapest method for 

natural gas production (Akansu et al., 2004). This makes it economically difficult to use 

hydrogen as a stand - alone fuel. An alternative is to use hydrogen as a blend with 

existing hydrocarbon fuels like diesel, gasoline and natural gas. This replaces some of the 

carbon with hydrogen, thereby decreasing carbon dioxide emissions in favor of water. 

Moreover, some of the unique properties of hydrogen such as high molecular diffusivity 

and low ignition energy can lead to engine performance improvements. With hydrogen, 

the engine can be run at lower equivalence ratios and there is less residual fuel in the 

exhaust. NOx emissions also can be reduced as the combustion can be carried out at 

lower equivalence ratio and hence lower temperature. Lower temperature reduces the 

formation of thermal NO which helps in reducing the engine - out NOx.  

Hydrogen can be used in electrochemical engines (fuel cells) as well as in IC 

engines. In electrochemical systems hydrogen is used to produce electric current which 

can be used to drive an electric motor. Internal - combustion engines are more 

widespread currently, and use the combustion of hydrogen with oxygen to release energy 

which is used to drive the piston to generate mechanical power. 

Several fundamental hypotheses regarding the use of hydrogen in IC engines will 

be examined in this thesis. These include chemical kinetic effects resulting from 

hydrogen enrichment and molecular transport effects. The propagation of steady one-
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dimensional laminar premixed flames of hydrogen/CH4 gas blends is studied numerically 

under conditions that are relevant to combustion in spark - ignition IC engines.
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Chapter 2 
 

Literature Review 

2.1 Introduction 

Hydrogen has been the focus of research for a number of years. The use of H2 as a 

fuel for IC engines dates to 1820, when Reverend Cecil in England used H2 as a fuel 

(Akansu et al., 2004). Erren et al. in the 1930s first emphasized the importance of H2 in 

reducing air pollution (Aslan et al., 1991). Unique properties of H2 that make it beneficial 

for engine operation have long been recognized. The efficiency and emission levels of a 

H2/methanol - fueled engine have been studied in detail by Adt and Swain (1974). They 

observed that the brake thermal efficiency of an engine operated with H2 as an additive 

with methanol was higher compared to engine operation with methanol alone. NOx 

emissions also were reduced. Tianshen et al. (1985) observed that supplying H2 together 

with methanol to spark - ignition (SI) engines improved the combustion characteristics: 

flame propagation improved, ignition delay was reduced and thermal efficiency 

improved. 

2.1.1 Engine Experiments and Modeling 

In this section previous work related to engine experiments and modeling using 

H2 as a fuel or as an additive is reviewed. This is done by summarizing salient results 

from several papers. 
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2.1.1.1 Exhaust Emission and Energy Consumption Effects from Hydrogen 
Supplementation of Natural Gas (Catellan and Wallace, 1995) 

Experiments for exhaust emissions and energy consumption effects due to 

addition of hydrogen in natural gas (NG) have been studied in this work. Most of the 

experiments were on the rich side of stoichiometric. From the experiments it was found 

that hythane (contains up to 20% H2 by volume in a H2/NG fuel mixture) fuelling leads to 

greater efficiency at low - load conditions compared to NG. The addition of hydrogen 

increases the laminar flame speed of mixture. Changes in laminar flame speed have the 

largest effect on the flame initiation part of the combustion process. Therefore the 

addition of H2 reduces burn time, especially at low speed and light load conditions where 

combustion duration is largest. A reduction in pumping loss with hythane also leads to a 

larger efficiency: manifold absolute pressure was higher with hythane fuelling by 0-3% in 

the experiment.  

Brake-specific NOx emissions (BSNOx) were 10-40% higher with hythane 

fuelling. This results from an earlier start of combustion and higher temperature over a 

longer time. Once formed, NOx does not have time to re - equilibrate to N2 and O2 as 

cylinder temperature decreases as the exhaust valve opens.  

At higher loads there is little difference between the brake specific total 

hydrocarbon (BSTHC) emissions for the two fuels. This is significant, since NG has 

higher carbon content than hythane. Engine out hydrocarbon emissions in SI engines are 

dominated by fuel trapped in crevices that is not oxidized. Higher temperature in the 

cylinder can allow the oxidation of this fuel and hence reduce unburned hydrocarbons in 

the exhaust. The actual level depends on the rate of oxidation of crevice hydrocarbons 
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which are returned to the combustion chamber late in the expansion stroke. This can be 

reasoned using relation [2-1] provided by Thomson and Wallace (2002), between exhaust 

gas total hydrocarbons and exhaust gas temperature at constant equivalence ratio, !: 
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Increased exhaust temperature leads to a reduction in the emissions. Here, exhaust 

temperature is defined as the temperature just before the burned gases reach the catalytic 

converter. For hythane fuelling it was found that the exhaust temperature was lower than 

for NG fueling. This leads to a reduced burning of fuel from the crevices and thus an 

increased THC emission.  

Brake-specific carbon monoxide (BSCO) emissions are higher for NG 

combustion compared to hythane for all speed and load conditions. CO is formed by 

three processes in an engine cylinder. At low loads, slow flame propagation can cause 

CO concentration to freeze at high proportions before complete oxidation is allowed to 

take place. During combustion a high NOx formation rate will displace oxygen, thus 

allowing less carbon oxidation to reach completion. Also the brief combustion of 

returning fuel from crevices can lead to CO formation. So under NG fueling higher CO 

emission was due to incomplete post combustion oxidation of returning fuel as there is 

higher post combustion of returning gases under NG conditions while there is a higher 

NOx production under hythane fueling.  

Brake-specific hydrogen (BSH2) emissions are higher with hythane fueling than 

with NG. BSH2 emissions were found to be more dependent on the combustion process 

than on the concentration of hydrogen in the fuel.  
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The effects of spark timing on efficiency and emissions were also studied. With 

advanced spark timing the peak pressure occurred close to top-dead-center and the 

combustion process occurred earlier in the cylinder. However, too much advance can lead 

to occurrence of peak pressure earlier than top-dead-center and hence a loss of efficiency. 

With an advancement of spark timing, combustion begins earlier and hence the gases are 

exposed to a higher temperature for a longer duration and this leads to an increase in NOx 

emission. Advanced timing has the same effect for both fuels on BSTHC. An advance in 

spark timing means there will be a reduction in the exhaust gas temperature and hence 

there would be reduced post combustion of returning fuel from the crevices leading to a 

higher BSTHC. Emission differences between fuels were higher at 1800 rpm than at 1200 

rpm. The lower exhaust temperatures at 1200 rpm prohibit post oxidation, so higher 

relative temperatures under natural gas fueling are less important in the post-combustion 

oxidation of hydrocarbons. At 1800 rpm temperature difference plays a more important 

role in the process. Hence, BSTHC emissions are higher for hythane than NG fueling. 

CO emission is not affected by the spark timing.  

With an increase in ! THC emissions increased as there is a reduction in the 

amount of available oxygen. Also THC emissions are higher for hythane fuelling than for 

NG. In the case of hythane fuelling there is a preferential oxidation of returning (from 

crevices) H2 compared to CH4 and hence more unburned CH4 is left. BSNOx emission 

decreased as ! increased as there is a reduction in temperature with an increase in ! and 

also there is less oxygen available for NOx formation with richer mixtures. The heat 

capacity of methane is 13% higher than H2 on a volumetric basis. So as ! increases, the 
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heat absorption of the additional fuel could cause the temperature to decrease more 

quickly under natural gas fuelling. 

2.1.1.2 NOx Emissions and Efficiency of Hydrogen, Natural Gas and Hydrogen/ 
Natural Gas Blended Fuels (Hoekstra et al., 1996) 

NOx emissions and efficiency of engines using H2, NG and H2/NG blends are 

discussed in this paper. The study was conducted to meet the equivalent zero emission 

vehicle (EZEV) standard set by the California Air Resource Board (California Air 

Resource Board, 1995). The authors performed engine dynamometer testing of a 

homogeneous-charge, spark-ignition, lean-burn engine fueled by NG, H2 or H2/NG 

blends. Hydrogen/compressed natural gas blends were explored due to the higher energy 

density of H2/CH4 blends and lower cost compared to pure H2. A compilation of the 

different methods of production of hydrogen and NG and associated cost has been 

published by Akansu et al. (2004). The most economical method of hydrogen production 

(steam reforming) is 2.2 times more expensive than the production of NG (Basye and 

Swaminathan, 1997).  

For the experiments, Hoekstra used a spark - ignited V8 engine with a 9:1 

compression ratio. A chemiluminescent detector was used to detect NOx emissions. To 

reduce the heat loss at top-dead-center, the engine was designed to produce minimum 

swirl. The H2 used was 99.9% pure and the NG composition was 93.6% CH4, 3.6% 

ethane, 1% propane, 0.7% CO2, 0.5% N2 and 0.4% butane. Cycle-to-cycle variation in the 

indicated mean effective pressure (IMEP) was analyzed and the coefficient of variation 

(COV) of IMEP was defined as the ratio of standard deviation to the mean. A COV of 
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10% was used to define the lean limit of engine operation; COV above 10% is perceived 

as a poor running condition. The experiments were done at 12.7 kW of power output to 

simulate a full - sized passenger car or light truck running at highway cruise.  

From the experiments it was observed that there was an increase in NOx 

emissions with increasing hydrogen content at constant equivalence ratio. As the 

equivalence ratio decreased, there was a reduction in NOx emissions as the amount of air 

in the combustion chamber increased. At a fixed equivalence ratio, the COV was lower 

for higher hydrogen content in the fuel mixture. The lean limit of operation based on 

COV = 0.1 varied from ! = 0.7 for NG to ! = 0.58 for 30% hydrogen. Ignition timing 

was found to have a strong impact on NOx emissions. As equivalence ratio increases, the 

effect of spark timing on NOx emissions increases, with an advance in spark timing 

leading to an increase in the NOx emissions.  

Tests were also conducted to determine the minimum equivalence ratio for the 

operation of the engines. The minimum was found to be ! = 0.2 for pure hydrogen, ! = 

0.48 for 30% H2 and ! = 0.62 for 100% NG. The effects of spark advance on emissions 

and efficiency were analyzed and it was found that with 100% hydrogen, the EZEV 

standard was not satisfied for operation below ! = 0.4. Similar results were found for 

100% NG fueling. In that case, the EZEV standard was not satisfied for operation at ! = 

0.62, and at this point the operation was erratic. When ! was increased the operation 

became smooth but the EZEV standard was not satisfied. When the same type of analysis 

was done for 30% H2 and 70% NG fueling, operation at ! = 0.52 lead to a large 

efficiency penalty but the EZEV standard was satisfied. Operation near minimum 

advance for best torque (MBT) spark timing with hydrogen at ! = 0.4 and with 30% 
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hydrogen at ! = 0.52 gave similar NOx results. The mixed fuel took 35% longer to burn, 

leading to a drop of 6% in efficiency for 30% hydrogen compared to 100% hydrogen as 

fuel. The pure hydrogen case was most sensitive to spark timing, with 30% hydrogen in 

between, and NG being the least sensitive. Moreover, results from a multi - cylinder 

engine at 9:1 compression ratio indicated that NOx levels of less than 10 ppm are 

possible at steady – state, part - throttle (! = 0.65) operation with 30% hydrogen as fuel 

with negligible efficiency penalty relative to MBT efficiency.  

2.1.1.3 Knock in Spark Ignition Hydrogen Engines (Li and Karim, 2004) 

The phenomenon of knock is an important concern as it limits the engine 

compression ratio. Knock in SI engines is acknowledged as a barrier to the further 

improvement of efficiency, increased power and use of wider range of fuels. Knock 

causes high vibration and it can damage engine components. Knock behavior of 

hydrogen in spark - ignition engines has been discussed in this paper. The authors 

modified a knock prediction model developed for SI methane engine applications. For 

this purpose a knock criterion, Kn, is defined. Knock occurred when this quantity 

exceeded a certain critical value. The criterion is a time-varying function defined as the 

“calculated temporal variation in the accumulated energy released due to pre-ignition 

chemical reaction activity within the temporally diminishing in size end gas per 

instantaneous value of the cylinder volume.” This energy release is normalized relative to 

the total amount of energy that is released through normal flame propagation per unit 

swept volume of cylinder:  
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[2.2]

The function Kn is dimensionless, and it also represents “the fractional increase in 

total cylinder pressure due to the pre-flame oxidation reaction activity of the 

instantaneous size of the diminishing end gas relative to the mean effective combustion 

pressure.” Mean effective combustion pressure is defined as the average increase in 

cylinder pressure due to normal combustion. This modeling approach was successful in 

CH4 SI engines. With hydrogen, there is a much wider range of operation on either side 

of stoichiometric where there can be knock, as shown in Fig 2-1. 

 
Fig. 2-1: Knocking region as a function of ! and compression ratio for pure H2. 
Source: Li and Karim, 2004. 

To account for this difference, Kn has been modified so that total energy release for any 

mixture is further normalized relative to the stoichiometric mixture. The combustion 
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duration is normalized relative to a constant value such as that observed with a common 

fuel like methane. The modified equation is: 
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Here hsp and ht are specific enthalpies of the unburned end gas at spark passage and at 

time instant t, respectively, !ho is effective heating value of the fresh charge, mu is the 

remaining mass of the end gas at time t and mo is the mass of the initial fresh charge.  

In this work the onset of knock was recorded using a transducer on the cylinder. 

Onset of knock was accompanied by the typical knocking sound and also the appearance 

of high - frequency pressure oscillations near the beginning of the expansion stroke. 

There was good agreement between the experimental and predicted values when knock - 

limited equivalence ratio (KLER) was plotted against compression ratio (CR). There was 

a difference between the predicted and experimental values at low CR and low intake 

temperatures. Fig 2-2 shows the effect of changing CR and intake temperature over the 

knock limits. 
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Fig. 2-2: K.L.E.R. variation with compression ratio under unthrottled operation 
in a CFR engine. Source:  Li and Karim, 2004. 

With an advance in spark timing the knock region widened by a very small amount. The 

knocking region tends to widen and the operational region tends to narrow with 

increasing temperature and increasing CR.  

Fig 2-3 shows that the engine achieves a power production peak at moderate CR, 

while high efficiency values are achieved at high compression ratios. Increasing the 

compression ratio leads to an increase in the power production efficiency. Reducing the 

equivalence ratio helps in higher utilization of the available fuel.  

The fuel used in this study was natural gas, which contains many gases other than 

CH4. The impact of these gases on knock was also studied using hydrogen as fuel. A 

number of experiments were performed and both KLCR and KLER were established for 

CH4 and CO. These are shown in Figures 2-4 and 2-5 respectively. Pure CH4 and CO 

have better knock resistance than hydrogen in air. CH4 improves the knock resistance 

while CO has little benefit on the H2/NG blend, even though pure CO has the best knock 
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Fig. 2-3: Indicated power production and indicated power production efficiency 
as a function of compression ratio. Source:  Li and Karim, 2004. 

resistance out of the three. This is due to the enhanced oxidation rate of CO in the 

presence of H2. The better knock resistance of CO comes into play only when the 

concentration of CO is very high. 

 
Fig. 2-4:  Variation of K.L.C.R. as a function of fraction CH4 and CO in a fuel. 
Source:  Li and Karim, 2004. 

 

106



15 

 

 
Fig. 2-5:  Variation of K.L.E.R. as a function of fraction CH4 and CO in a fuel. 
Source:  Li and Karim, 2004. 

2.1.1.4 The Addition of Hydrogen to a Gasoline Fuelled SI Engine (Andrea et al., 
2004) 

There have also been efforts to use hydrogen with other fuels including gasoline. 

Andrea et al. (2004) have made an experimental study of the use of hydrogen with 

gasoline in IC engines. They used a 20 HP, four-stroke, V – twin engine; and the spark 

plug was fitted with a pressure transducer to measure the engine pressure. The 

equivalence ratio defined by Yu et al. (1986), has been used: 
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Here Q represents the flow rate and C is the concentration of gasoline (subscript G), 

hydrogen (subscript H) or air (subscript air). (CH/CAir)st is the stoichiometric fuel/air ratio 

for hydrogen, and QH/ (CH/CAir)st represents the amount of air needed to oxidize hydrogen 

completely. This is subtracted from total amount of air, producing the amount that is left 

for the oxidation of the hydrocarbon.  

From the experiments, it was observed that there was very little effect of 

hydrogen addition on engine torque if the equivalence ratio ! > 0.85. With the addition of 

2% hydrogen there was an improvement in torque of only 1 Nm while for ! < 0.85, there 

was an improvement of 5 Nm. For 1% H2 addition the results are in between those of no 

hydrogen and those of 2% addition. Here addition of hydrogen has been done on a 

volumetric basis. The results can be separated into two groups based on equivalence 

ratio. For ! > 0.85 there is no difference in crank angle degree (CAD) where the peak 

burn rate occurred with hydrogen addition. No change was seen in the 2-10%, 10-90% 

and 50-90% burn duration periods with hydrogen addition in the mixtures for ! > 0.85, 

with the differences falling within the limits of uncertainty. For ! < 0.85, on average the 

period necessary to burn 2-10% of mass decreased by 5 CAD with addition of 2% 

hydrogen and an average reduction of 3 CAD was seen with the addition of 1% hydrogen 

in air. All the differences were larger than experimental uncertainty of 2 CAD. The trend 

of decrease continued for the 10 – 90% burn duration period. An average decrease of 20 

CAD with addition of 2% H2 and 9 CAD with the addition of 1% H2 in air was seen.  

The COV in the IMEP (COVIMEP) was calculated in order to quantify cycle-to-

cycle variation. From the results it was evident that with 2% H2 addition, the engine 

almost always operated in an acceptable range of less than 10% COVIMEP and the 
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COVIMEP began to increase above 10% for mixtures with ! < 0.65. Addition of hydrogen 

reduced the cyclic variability. Without hydrogen addition, COVIMEP was above 10% for 

charges leaner than ! = 0.85. In some cases with the hydrogen addition, there was a 

reduction in COVIMEP by 30% when compared to operating without any addition. So 

hydrogen addition reduced the cyclic variation when the operation otherwise would 

become unstable due to the low equivalence ratio. No effect of hydrogen addition is seen 

near stoichiometric burning as the engine operation is already stable. The authors have 

reasoned that fluctuations in the early stage of the combustion process have a large 

impact on cycle – to - cycle variability, as the flame is small at the start of combustion 

and it is not able to average out any inhomogeneity in the fuel-air mixture. This 

inconsistency in the spark kernel is carried as the flame grows. The decrease in cycle-to-

cycle variability (as indicated by COVIMEP) with the addition of hydrogen was attributed 

to the decrease in burn duration.  

Formation of NO was studied through the experiments. It was observed that while 

operating close to stoichiometric conditions the addition of hydrogen has little impact on 

the NO concentration. However, for ! < 0.8 the formation of NO increased with 

increasing hydrogen. The increase in NO emissions with the addition of hydrogen is 

correlated to the faster burn rate as shown in Fig 2-6. 
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Fig. 2-6: Change in NO concentration with change in 90% burn duration due to 
H2 addition. Source: Andrea et al., 2004. 

With the addition of hydrogen, earlier burn occurred thereby increasing the cylinder 

pressure and temperature, leading to an increase in NO. Higher temperature rise favors 

the formation of NO over NO2 and also increases the rate of formation of NO. 

Experiments were also carried out to determine the feasibility of a hydrogen-

producing unit onboard. The device produced 6.7 ml/s of hydrogen from an electrical 

power input of 169 W. If this device is scaled up to produce H2 in the amount required 

for 1% H2 addition (80 ml/s) and 2% H2 addition (130 ml/s), the resultant power 

consumption would be 2000 W and 3000 W respectively. The corresponding increase in 

power from the engine would be 500 – 1800 W for 1% H2 addition and 200 – 3500 W for 

2% H2 addition. Even if the efficiency loss is ignored, the energy required to generate 

hydrogen is more than the energy produced from its use as a blend with gasoline. 

 

110



19 

2.1.1.5 Emission Results from the New Development of a Dedicated Hydrogen – 
Enriched Natural Gas Heavy Duty Engine (Collier et al., 2005) 

NOx emission benefits from the use of H2 have been observed by Collier et al. 

(2005).  One of the major mechanisms for reducing NOx from engines is through charge 

dilution. This can be done by exhaust gas recirculation (EGR) or by lean burning of the 

mixture. The problem in either case is misfire beyond a certain limit. The addition of 

hydrogen to a hydrocarbon fuel does not reduce NOx directly. In fact, NOx emissions 

increase with the addition of H2 for the same overall stoichiometry. The benefit of H2 is 

to extend the lean limit or dilute limit of operation, thereby reducing the combustion 

temperature and hence reducing NOx.  

 
Fig. 2-7:  NOx vs equivalence ratio for different H2/CH4 mixtures. Source:  
Collier et al., 2005 
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From Fig 2-7 it is evident that with increased H2 addition the lean burn limit (reducing !) 

has been extended. The benefits of lean burn for reducing NOx emissions diminish for 

very low values of !. This “knee of the NOx curve” decreases with increasing H2 

fraction. Fig 2-7 shows that 30% of H2 addition by volume is optimum in the sense that 

higher levels of H2 do not yield significant additional reductions in NOx. Here the engine 

was operated at constant torque and rpm and the charge was diluted with excess air until 

there was a misfire to determine the lean burn limit. Misfire was determined by in-

cylinder pressure measurements. 

From the experiments they also hypothesized that in the combustion of NG, the 

rate-controlling reaction is: 

CH4 + O ! CH3 + OH. [2.5]

 
Once CH3 is formed, other reactions proceed quickly. Conversion of CH4 to CH3 radical 

via the OH- radical is also a fast reaction. In the presence of H2, OH radicals are 

produced very quickly and these are instrumental in removing the first H atom from the 

CH4 molecule and thus creating the CH3 radical. 

2.1.1.6 Effects of Hydrogen Enhancement on Efficiency and NOx Emissions of Lean 
and EGR - Diluted Mixtures in a SI Engine (Ivanic et al., 2005) 

Ivanic et al. (2005) observed experimentally the benefits of using H2 as an 

additive with indolene fuel. It was found that lowered combustion temperatures reduce 

NOx emissions. Reducing the intake manifold throttling lowers pumping losses leading 

to higher net efficiency. With the increased presence of air there was an increase in the 
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ratio of specific heats that increases the expansion work by allowing the burned gases to 

expand through a larger temperature ratio prior to exhaust. The combustion efficiency 

was increased because of the increased amount of fuel that was burned. However, these 

advantages are offset by reduced combustion speed of the dilute fuel-air mixture which 

can lead to cycle-to-cycle variation. Hydrogen addition also allowed higher dilution, 

accelerating the combustion process and thus extending the dilution limit.  

For this study H2 was produced through a gasoline reformer called a plasmatron. 

For this purpose a thermal diffusion parameter (TDP) was defined as: 
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Here is the chemical energy released during combustion per constant value heat 

capacity of the unburned cylinder charge, Q

T/

LHV is the lower heating value, m is the mass 

of the species in consideration and Cv is the heat capacity of the species in consideration. 

The basis for the TDP is the thermal capacity of the diluent. It is used to normalize data 

with different diluents and compare them on a common basis. Since TDP accounts for 

heat capacities for all diluents present in the charge mixture, EGR dilution levels that 

correspond to particular air dilution can be determined, since they result in the same TDP 

value.   
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From the experiments it was observed that under partial load conditions, lean 

dilution improves efficiency by 12% while EGR improves efficiency by 8%. Either form 

of dilution reduces NOx by 98% when the engine is operated close to its dilution limit. 

Lean dilution caused NOx levels to peak near a relative air – fuel ratio of 1.1 and then 

decline out to the dilution limit, while increased EGR dilution always reduced the NOx 

emissions. By comparing the TDP parameter, it was found that the effect of EGR, at 

equal dilution, on NOx was more than the dilution by excess air. 
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2.1.2 Fundamental Combustion Experiments and Modeling 

In this section previous work related to combustion experiments and modeling 

using H2 as a fuel or as an additive is reviewed. Salient results are summarized from two 

important papers. 

2.1.2.1 Hydrogen/Oxygen Additives Influence on Premixed Iso-Octane/Air Flame 
(Sobiesiak et al., 2002) 

Numerical methods have also been employed to study the impact of hydrogen 

addition on the performance of different fuels. Sobiesiak et al. studied the behavior of 

premixed flames for different compositions of iso - octane/ air using CHEMKIN and a 

detailed chemical mechanism provided by Peters (1994) along with the GRI Mech 3.0 

(Smith et al.) NOx mechanism. The final mechanism consists of 308 reactions and 75 

species. Calculations were performed with different amounts of O, H, H2 and O2 and with 

equivalence ratios varying from 0.6 to 1.3. A larger increase in laminar flame speed with 

H2 addition was found for lean-burning compared to stoichiometric - burning cases. For 

stoichiometric burning with 5% and 10% addition of H2, flame speed increased 1% and 

5% respectively, while for an equivalence ratio of 0.6, 10% hydrogen addition yielded a 

10% increase in flame speed. This results from the combined effect of the higher burning 

velocity of hydrogen and enriched oxygen concentration. There also was an increase in 

reaction rate with addition of atomic hydrogen. For the stoichiometric case the increase 

was similar to that for H2 addition at 5% and 10% levels, but for lean and rich mixtures 
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the increase was twice that for addition of H2. The most significant increase in burning 

velocity was for the case of addition of H and O simultaneously. For all additives there 

was an earlier rise in temperature in the preheat region, but later in the reaction zone the 

temperature fell below that of pure isooctane case. Finally, the higher reaction rates in the 

recombination zone resulted in higher flame temperatures. Hydrogen/oxygen additives 

have a small effect on the induction time, but the increase in reaction rates resulting in 

higher flame temperature result in higher burning velocity with additives. CO emissions 

were found to be related to the OH radical concentration. In general there was an increase 

in the CO oxidation in the zone where there was an increase in OH concentration. The 

reaction involving consumption of CO is: 

CO + OH = CO2 + H. [2.7]

NO concentration was found to increase for higher adiabatic flame temperatures. 

The addition of oxygen results in increased concentration of O and also of the adiabatic 

flame temperature leading to an increase in NO concentration. This was evident from the 

study of pure H2/O2 flames near stoichiometry, where 90% of the NO produced was in 

the post - flame region. The single most influential reaction observed was: 

N + NO = N2 + O. [2.8]

In the flame region 10% of NO was produced from the following six important reactions: 

CH + N2 = HCN + N. [2.9]

O2 + H = OH + O. [2.10]

CH2 + H = CH + H2. [2.11]

CO + OH = CO2 + H. [2.12]
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CH + O2 = CHO + O. [2.13]

 NNH + O = NH + NO. [2.14]

NO2 emissions were higher for all the cases with different additives. However the 

increase in NOx was smaller if the additives were used in lean mixtures. 

2.1.2.2 Nitric Oxide Detection in Turbulent Premixed Methane/Air Flames 
(Herrmann and Boulouchos, 2005) 

An experimental study of nitric oxide formation in turbulent premixed flames has 

been done by Herrmann and Boulouchos (2005) to determine the impact of turbulence 

and equivalence ratio. NO production in hydrocarbon/air mixtures occurs through two 

principal mechanisms. Thermal NO is produced at high temperatures by the Zeldovich 

mechanism. In the prompt NO or Fenimore mechanism, the CH radicals react with the 

nitrogen in air to form HCN and N, eventually leading to NO. In the experiment the 

flame front was defined by the presence of OH radicals. The threshold for the OH 

concentration was determined by the inflection point in the signal histogram within the 

reaction zone. Laminar premixed flame speed calculations show that this position 

corresponds to highest CH radical concentration and hence the highest heat - release rate. 

Variations in NO concentration with varying equivalence ratio are shown in Fig 2-8. 

With increasing distance downstream in the flame, there is a homogenization of NO 

concentration. As a consequence of the optimal combination of temperature and oxygen 

concentration, the highest NO concentration appears at ! = 0.91. For leaner mixtures NO 
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concentration decreases as the post - flame temperature reduces so that the contribution 

of the Zeldovich mechanism reduces.  

Fig 2-9 shows the NO distribution along the symmetric axis for constant 

equivalence ratios and different turbulence conditions. In the reaction zone, the profiles 

for near stoichiometric flames show a steeper slope. There is a small influence of 

turbulence on NO formation. At higher turbulence levels, NO formation increases due to 

higher turbulent burning speed, a shorter flame is formed and the reaction zone is located 

closer to the burner.  

 
Fig. 2-8: NO distribution for different ! and constant turbulence. Source: 
Herrmann and Boulouchos, 2005 
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Fig. 2-9: NOx concentration variation under different turbulence conditions and 
constant equivalence ratio. Source: Herrmann and Boulouchos, 2005 

2.1.3 Present Work 

In this study, the influence of hydrogen addition to premixed, steady - state, one -

dimensional methane flames is examined. Three basic studies were performed: changes 

in the flame structure due to changes in the hydrogen/methane ratio for a fixed 

equivalence ratio; influence of the diffusion coefficient of hydrogen on flame structure; 

and the influence of exhaust - gas recirculation. For the investigation of hydrogen 

content, energy content of the fuel mixture has been kept constant to isolate thermal 

effects from kinetic and transport effects. For the investigation of molecular diffusion 

effects, two schemes were adopted: in the first scheme the diffusion coefficient of 

hydrogen is set equal to that for methane while in second scheme the Lewis number has 
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been set to unity for all the species in the reacting mixture. Exhaust - gas recirculation is 

an important method for reducing NOx production in IC engines. For the EGR study, 

20% by volume of intake mixture has been considered to be products of combustion and 

its influence on reducing the NOx has been studied. 
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Chapter 3 

Computational Tools 

3.1 CHEMKIN   

The major computational tools used for the present study are CHEMKIN II (Kee 

et al. 1989) and CHEMKIN 4.0 (Reaction Design, 2004). CHEMKIN is a software suite 

developed by Sandia National Laboratories beginning in the 1970s; it is used for 

microelectronics, combustion and chemical processing applications. CHEMKIN 

incorporates complex chemical kinetics and realistic thermochemical properties. There is 

a large collection of programs and subroutine libraries that work together to facilitate the 

formation, solution and interpretation of problems involving gas - phase and 

heterogeneous reacting systems.  

The basic structure of CHEMKIN is shown in Fig 3-1. The CHEMKIN package is 

basically composed of two blocks of FORTRAN code and two input files. The two codes 

are the “CHEMKIN Interpreter” and the “Gas – Phase Subroutine Library,” and the input 

files are the thermodynamic database (therm.dat) and the gas-phase reactions (chem.inp). 

The “chem.inp” input file consists of lists of elements, species and reactions. The 

thermodynamic data, “therm.dat,” contains thermodynamic properties for each species 

mentioned in the form of polynomial coefficients (Kee et al., 1989). Thermodynamic data 

for all the species mentioned in the input file must be present. The user needs to run the 
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interpreter, which reads the symbolic description of the reaction mechanism and 

thermodynamic properties from the thermodynamic database. 

 
Fig. 3-1: Basic structure of CHEMKIN (Source: Kee et al., 1996) 

 

The linking file that is produced is called “chem.bin” and can either be in binary or 

ASCII format as desired. There is also an output file called “chem.out” that echoes a 

detailed list of elements, species, reactions and errors, if any. The linking file contains the 

information for all the species, reactions and thermodynamic properties which are later 

used by the calls from other CHEMKIN subroutines in the application code. The 

application code calls the subroutines contained in the Gas – Phase Subroutine Library to 

obtain information on molar production rates and other quantities. The routines in the Gas 

– Phase Subroutine Library derive the necessary information from the linking file and 

process it to give the desired results. The inputs for the subroutines in the Gas – Phase 

Subroutine Library typically are temperature, pressure and species composition. Before 

calling any other CHEMKIN subroutine in the Gas – Phase Subroutine library, it is 
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necessary to call subroutine CKINIT which fills the work arrays ICKWRK, RCKWRK 

and CCKWRK. These work arrays are related to integer, floating point and character 

space, respectively, and are filled when the linking file is read by the CKINIT subroutine. 

The dimension for the work arrays are specified by the user; if the size of data that is 

required is larger than the size of the arrays an error message is printed asking for an 

increase in the array dimension. Next a brief description of the input files for CHEMKIN 

is provided. 

3.1.1 chem.inp  

This input file to the CHEMKIN interpreter contains the names of the elements 

and species that are involved. Input is restricted to an 80 - column format. The input for 

elements and species is format free with blank space separating the names. In addition 

there is a description of the elementary reactions that are involved. The elements and 

species are specified in a symbolic form and must be in the list of elements that 

CHEMKIN can accept. In the case of isotopes, the molecular weights must follow the 

symbolic name. After the elements and the species, there is a list of elementary reactions 

in symbolic form. The reactions must involve only those species that have been included 

in the species list. Each reaction is followed by three Arrhenius coefficients: a pre-

exponential factor A, temperature exponent # and activation energy EA. The forward rate 

coefficient for each reaction is presumed to follow equation 3-1:  

$
%
&

'
(
) *1

RT
EATk A

f exp7  [3.1]
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where R is the universal (molar) gas constant. 

Enhanced third - body efficiencies for selected species may be specified in the 

line following any reaction that contains an arbitrary third body M. Comments are 

indicated by exclamation marks. A sample of the interpreter input file is shown in Fig 3-

2. CHEMKIN uses C. G. S. units by default. 

ELEMENTS 
H  O  AR 
END 
SPECIES 
H2 O2 H O OH HO2 H2O2 H2O AR 
END 
REACTIONS 
H2+O2=OH+OH                                  1.7E13    0.0    47780. 
H+O2+M=HO2+M                              2.1E18    -1.0       0. !SLACK 
   H2O/21./   H2/3.3/  O2/0.0/ 
H2O2+H=HO2+H2                              1.6E12    0.0     3800. 
H2O2+OH=H2O+HO2                        1.0E13    0.0     1800. 
END 

 

Fig. 3-2: Sample chem.inp file. 

3.1.2 therm.dat   

Each species listed in the “chem.inp” file must have associated thermodynamic 

properties in the thermodynamic data file “therm.dat.” A sample thermodynamic data file 

is shown in Fig 3-3. 

Fig. 3-3: Sample therm.dat file. 
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The format for “therm.dat” file must follow the rules (Kee at al., 1996) that are given in 

Table 3-1. Polynomial coefficients a1k ! a7k for each species k corresponding to species 

specific heat, enthalpies and entropies as follows: 

Table 3-1: Contents of “therm.dat” file.

Line 
Number 

Contents Format Column

1 THERMO Free Any 
2 Temperature ranges for two sets of 

coefficients: lowest temperature, 
common  temperature and highest  
temperature 

3F10.0 1 to 30 

Species name which must start in 
column 1 

18A1 1 to 18 

Date 6A1 19 to 24 
Atomic symbols and formulas 4(2A1, I3) 25 to 44 
Phase of species: S, L or G. A1 45 
Low temperature E10.0 46 to 55 
High temperature E10.0 56 to 65 
Common temperature if needed E8.0 66 to 33 
Atomic symbols and formulas 2A1, I3 74 to 78 

3 

The integer 1 I1 80 
Coefficients a1k to a5k for upper 
temperature interval calculation using 
equations [3.2] thorough [3.4]. 

5(E15.0) 1 to 75 4 

The integer 2 I1 80 
Coefficients a6k, a7k for upper 
temperature interval and a1k, a2k, a3k 
for lower temperature interval 
calculation 

5(E15.0) 1 to 75 5 

The integer 3 I1 80 
Coefficients a4k, a5k, a6k, a7k for lower 
temperature interval 

4(E15.0) 1 to 60 6 

The integer 4 I1 80 
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Other thermodynamic properties are given in terms of C0
P, H0 and S0

. 

3.1.3 tran.dat 

In the case of flame calculations it is also necessary to specify multicomponent 

viscosities, thermal conductivities, diffusion coefficients and thermal diffusion 

coefficients. There are separate subroutines for each of these calculations, and they are 

contained in the CHEMKIN program tranlib.f. Molecular transport properties are 

specified in a third input file named “tran.dat.” The contents of this file are the symbolic 

name for each of the species listed in the “chem.inp” file. The species name is followed 

by an index indicating whether the species is monoatomic (0), linear (1) or non-linear 

geometry (2). The remaining entries for each row are: the Lennard – Jones potential well 

depth in Kelvin, Lennard – Jones collision diameter in Angstroms, dipole moment in 

Debye, the polarizability in cubic angstroms and the rotation relaxation collision number 
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at 298 K. After the last number a comment can be added. A sample tran.dat file is shown 

in Fig 3-4. 

 

 

AR                 0   136.500    3.330     0.000     0.000     0.000 
C                   0     71.400     3.298     0.000     0.000     0.000  
C2                 1     97.530     3.621     0.000     1.760     4.000 
C2O              1    232.400    3.828     0.000     0.000     1.000  
CN2              1    232.400    3.828     0.000     0.000     1.000  
C2H              1    209.000    4.100     0.000     0.000     2.500 

 

Fig. 3-4: Sample tran.dat file. 

3.2  Application Codes 

Application codes solve conservation equations for mass, momentum and energy 

for a specified configuration. Each application code calls appropriate subroutines from 

the gas - phase subroutine library. For example, the mixture mass density may be 

calculated from given temperature, pressure and mass fraction using equation 3.5 by 

calling subroutine CKRHOY: 

" # .
1
6
1

1
K

k
kk WX9  [3.5]

CALL CKRHOY (P, T, Y, ICKWRK, RCKWRK, RHO). 

3.2.1 PREMIX 

The application code generally is provided by the user. However, for several 

standard configurations application codes are available (e.g. an adiabatic reactor, 
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premixed flame, compression - ignition engines, etc) with the standard CHEMKIN 

package. PREMIX (Kee et. al., 1996) is the name of the application code for steady, one - 

dimensional, freely propagating laminar premixed flames.  

PREMIX computes the flame species and temperature profiles as well as the 

laminar flame speed. The calculation involves multi-component molecular transport 

properties (Kee et. al., 1989) and finite-rate chemical kinetics. PREMIX solves the 

system of ordinary differential equations governing the steady one-dimensional flame 

structure using implicit finite-difference methods including both time-dependent and 

steady-state methods. It employs automatic solution adaptive mesh refinement to refine 

the grids in the region of steep gradients. 

Two flame configurations can be solved using PREMIX. The first is a burner-

stabilized flame with known mass flow rate. Here there are two variants: one where the 

temperature profile is known (only the species quantities are solved) and one where the 

temperature profile is determined from the energy conservation equation.  

The second flame configuration is a freely propagating flame. This configuration 

is appropriate when the reactant temperature and pressure are known and there are no 

heat losses from the flame (adiabatic). The temperature profile is obtained from solving 

the energy equation and the mass flow rate (or laminar flame speed) is an output of the 

calculation. CHEMKIN uses the boundary-value solver TWOPNT to perform the 

solution. 

A schematic showing the PREMIX computation steps is shown in Fig 3-5. 
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Fig. 3-5: PREMIX schematic. 

The molecular transport properties for each of the species listed in the “chem.inp” file are 

specified in the “tran.dat” file, as discussed earlier. The tran.dat file is processed by 

tranlib.f to generate a transport linking file, “tran.bin.” The transport linking file tran.bin, 

CHEMKIN linking file chem.bin and user input file premix.inp are the three inputs to 

PREMIX. The user input file, premix.inp, uses (Table 3-2) a keyword format. Each line 

has an identifying keyword. Some of the keywords require numerical input while others 

do not. Table 3-2 gives a brief description of the keywords. Some of the keywords can 

give the user better control over the numerical solution, but the default values have been 

found to be adequate in most cases.  
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Table 3-2: Keywords for PREMIX file premix.inp. 

Keywords Description 
ENRG Solution is obtained from a coupled energy and species equation. Given 

temperature profile is used as an initial guess. 
FREE Freely propagating will be solved for, and hence flame speed determined. 
MIX Transport properties are calculated using mixture-averaged formulas. 
VCOR Ensures mass conservation of gas mixture. 
FLRT Initial estimated mass flow rate of the reactants. 
PRES Pressure (constant). 
TFIX A boundary condition that fixes the temperature at one point in the flame. 

It is required as the problem is posed in a flame-fixed coordinate system. 
TEMP The initial guessed temperature profile. 
CURV Adaptive mesh parameter, which controls the number of grid points 

inserted in regions of high curvature. Smaller values yield finer meshes. 
GRAD Adaptive mesh parameter, which controls the number of grid points 

inserted in regions of high gradient. Smaller values yield finer meshes. 
NPTS The number of initial mesh points. For lower values of GRAD and CURV, 

higher values are required to ensure convergence. 
WMIX An estimated width of the flame zone. 
XCEN An estimated location for the center of the flame. 
XEND An estimated  location for the end point (product side) of the flame. 
INTM The mole fractions of the intermediate species. 
MOLE Calculations will be done in the terms of mole fraction (versus mass 

fractions). 
PROD Estimated mole fractions for the products. 
REAC Moles of reactant species.  
ATIM Absolute tolerance for the convergence of Newton iterations in time-

stepping procedure. 
ATOL Absolute tolerance for the convergence of Newton iterations. 
RTIM Relative tolerance for the convergence of Newton iterations in time-

stepping procedure. 
RTOL Relative tolerance for the convergence of Newton iterations. 
TIME Time step to be used if Newton method fails. 
TIM2 Same as TIME except that it is used for the energy equation. 
WDIF Upwind differencing is to be used on the convective terms. 
PRNT  Printing of the intermediate solution.  
CNTN Use for a continuation run so that the program expects keywords after 

“END.” 
END Signifies the end of input.  
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The UNIX commands required to compile and run an application code using the 

CHEMKIN II package are shown in Table 3-3. 

Table 3-3: Steps to compile and run a CHEMKIN application on a UNIX 
system. 

 UNIX command Meaning 
ifc –o chem.exe ckinterp.f 
(ifc- Intel FORTAN compiler) 

Compile and link the interpreter 
using IFC compiler and get the 
executable chem.exe. 

./chem.exe  Execute the interpreter. The 
interpreter will open the files 
chem.inp and therm.dat. These files 
are opened as logical units 5 and 17, 
respectively. The interpreter creates 
the binary linking file chem.bin and 
the ASCII output file chem.out. 
These files use units 25 and 6, 
respectively. 

ifc –c cklib.f Compile the CHEMKIN Gas-Phase 
Subroutine library. 

ifc –c sample_user.f Compile the user’s FORTRAN 
program sample-user.f. 

ifc –o sample_user.exe sample_user.o cklib.o Link the user’s FORTRAN program 
with the CHEMKIN Gas-Phase 
Subroutine Library. 

./sample.exe<sample_user.inp>sample_user.out Execute the user’s program, reading 
‘sample_user.inp’ as unit 5 for the 
user’s input and creating 
‘sample_user.out’ on unit 6 for the 
user’s output. 
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3.3 XSenkplot  

XSenkplot (NIST XSenkplot, 1996) is a graphical post - processor for CHEMKIN 

application codes. It helps to sort through and display species and reaction information 

obtained from the CHEMKIN calculations. XSenkplot reads the mechanism (chem.bin) 

and solution (save.bin) files from a CHEMKIN application run and uses the CHEMKIN 

subroutine library CKLIB Version 4.9 for the interactive display of information from the 

solution file. There are two versions of the program: Senkplot (uses SGI GL Graphics 

call) and XSenkplot (uses X Windows and OSF/Motif Graphics calls that are supported 

on UNIX workstations). XSenkplot has been modified to work on LINUX workstations 

as part of the present work. 

XSenkplot allows variety of analyses of time/temperature dependent species and 

reaction information, including: species concentration (mole fractions), species - steady 

state analysis, individual reaction rates and net production/destruction rates, reaction 

equilibrium analysis and time/temperature history analysis of the system. An interactive 

analysis of independent and dependent species and reaction pathways and pathway 

flowchart construction can also be performed. Figure 3.6 shows examples of plots 

obtained from XSenkplot for a CH4/O2, adiabatic, steady - state and one - dimensional 

system using PREMIX. Similar analyses can be performed for other CHEMKIN 

application codes. Figure 3.7 shows the reaction pathways plot.  
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Fig. 3-6: Output screen from XSenkplot post processing 

 

 
Fig. 3-7:  Reaction pathways plot from XSenkplot 
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The reaction pathways window displays selected species in the reacting system 

and the reaction paths that connect them. Each reaction is indicated by an arrow from 

reactant to the product. The base of the arrow represents the reactants while the point of 

the arrow represents the products. The length of the arrow is insignificant; however, the 

thickness of the arrows represents the relative rates of the reactions, and the color of the 

arrow represents the reaction partner. A legend on the lower right - hand corner of the 

plot lists the associated partners in the reactions based on the color. Unimolecular 

reactions (no reaction partner) are represented by black arrows.  
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Chapter 4 
 

Combustion Conditions and Cases Studied 

Three basic studies have been performed: comparison of the flame structure for 

varying hydrogen fraction in CH4/H2 fuel mixtures, study of the influence of molecular 

diffusivities and study of the effect of EGR. In this chapter, discussions of 

thermochemical conditions, chemical mechanisms, molecular diffusivity models and 

exhaust gas recirculation (EGR) methodology are presented. Computational issues are 

discussed and a run matrix is developed. 

4.1 Thermochemical Conditions  

4.1.1 Pressure and Temperature 

Typical in-cylinder temperature and pressure at the time of ignition (~ 20 – 40 

degrees before top-dead-center) in a SI engine range from 500 – 700 K and 8 – 10 atm 

respectively. Hence a reactant temperature of 598 K (325 oC) and pressure of 8 atm has 

been used for all simulations. The conclusions that are drawn regarding the effects of 

variations in reactant composition, chemical mechanism and molecular diffusivity are 

expected to remain valid over the range of temperatures and pressures that would be 

encountered in a practical engine. 
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4.1.2 Reactant Composition  

Fuel-lean to stoichiometric mixtures are of interest. Lean mixtures are of 

particular interest for their higher thermal efficiency and lower combustion temperatures; 

the latter reduce the engine - out NOx. Thermal NO reactions become important at 

temperatures above 1800 K, so it is desired to keep the maximum temperature below that 

level. Lower equivalence ratio can be achieved with a higher percentage of hydrogen in 

H2/CH4 fuel blends. For pure CH4 the lowest equivalence ratio for stable combustion is 

approximately 0.6. In the presence of hydrogen lower equivalence ratios of 0.3 can be 

achieved. Hydrogen fractions (" defined as ratio of moles of H2 to total number of moles 

of H2 and CH4) of 0.0, 0.3, 0.7 and 1.0 have been studied here. The value " = 0.3 is of 

particular interest, as this is the value that has been identified by Collier et al. (2005) as 

yielding the lowest BSNOx in experimental studies of H2/natural gas-fueled SI engines.  

4.2 Chemical Mechanisms 

Numerous methane and/or natural gas mechanisms are available in CHEMKIN 

format. Each mechanism has been optimized for different temperature and pressure 

ranges, equivalence ratios and combustion regimes (e.g. premixed flame propagation, 

auto-ignition, etc.). 

The mechanisms considered for the present study are summarized in Table 4-1. 

These have been selected based on the requirement of simulating methane and/or natural 

gas premixed flames under IC - engine conditions, with particular emphasis on NOx 

emissions. 
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Table 4-1: Reaction mechanisms considered

Mechanism Number of 
species 

Number of 
reactions 

GRI Mech 2.11 
(Bowman et al.) 

49 279 

GRI Mech 3.0 
(Smith et al.) 

53 325 

Glarborg 
(Glarborg et al., 1998) 

71 447 

ARM ( based on GRI Mech 2.11) 
(Pope et al.) 

19 16 

The GRI Mech mechanisms are available from University of California, Berkley 

(Gregory et al., 2003). GRI Mech is a list of elementary chemical reactions and 

associated rate constants that have been optimized for natural gas/hydrogen flames. GRI 

Mech 2.11 is an older release while GRI Mech 3.0 is a newer version that has been 

optimized further for methane and natural gas combustion including NOx emissions. The 

GRI Mech mechanisms are not intended be used for higher hydrocarbon species as a 

primary fuel in spite of the presence of C2 and C3 species in the system. The mechanisms 

are suitable for a pressure range of 1000 torr to 10 atm, temperature range of 1000 to 

2500 K and equivalence ratios from 0.1 to 5.0 for premixed systems. The GRI 

mechanisms have been adopted widely as “full” methane and/or natural gas mechanisms 

in the combustion modeling community and as the basis for much reduced mechanism 

development. 

Glarborg et al. (1998) used GRI Mech 2.11 as the basis for the development of 

advanced NOx chemistry. The Glarborg mechanism includes several species and 

reactions aimed at improved NOx prediction. In particular, pathways for the reaction of 

species pairs HCCO, CH3 and CH3, NO have been modified from the GRI Mech 2.11 
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mechanism. The Glarborg mechanism is considered to be one of the most detailed 

mechanisms for the study of NOx chemistry. 

GRI Mech 2.11, GRI Mech 3.0 and Glarborg are detailed mechanisms that are 

intended to provide a complete description of the elementary (molecular level) reactions 

that occur in the system. Many of the species and reactions are not necessary for normal 

calculations but have been included for radiation and ionization studies, for example, 

where rarer reactions and low-concentration species become important. Large 

mechanisms are computationally expensive, difficult to analyze in detail using reaction 

pathways analysis and not necessary in many situations. Computational efficiency is 

important in the engine combustion studies which are the eventual target of the present 

research. Hence there is a need for smaller or reduced mechanisms that capture the global 

behavior of the system. Augmented reduced mechanisms (ARM’s) are mechanisms that 

have been derived from detailed mechanisms that eliminate the reactions and species that 

are not important for normal combustion studies. There are many versions of ARM’s 

available. An ARM obtained from GRI Mech 2.11 has been used for the present study 

(Pope et al). The number of species and reactions has been reduced from 49 and 279 in 

GRI Mech 2.11 to 19 and 16, respectively, in the ARM considered. Here, however, the 

ARM lacks detailed NOx chemistry; NO2 is not considered, for example. 

To create a reduced mechanism from a detailed mechanism, several systematic 

steps are followed. First a skeletal mechanism is created from the detailed mechanism. 

This is done by eliminating reactions with rates that are small compared to other 

reactions. Reactions also can be eliminated if the flux of a species through the reaction is 

less than a pre-determined value. For every reaction that is eliminated a comparison 
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analysis with the original detailed mechanism is done to avoid the elimination of 

important reactions. Hence, a skeletal reaction set is obtained that has a reduced number 

of elementary reactions and species. From the skeletal mechanisms, quasi-steady-state 

(QSS) analysis and other algebraic methods as discussed by Chen (1987) are applied to 

identify QSS species. QSS species are those species whose concentrations remain low 

with respect to the product concentration. QSS analysis results in a non-linear algebraic 

equation set that expresses the concentration of QSS species in terms of other retained 

species. The QSS species and the corresponding reactions that are linked to QSS species 

thus can be eliminated from the reaction mechanism. The resulting global reaction set no 

longer corresponds to an elementary reaction set, and the chemical production rates do 

not fit the standard CHEMKIN template (see Section 3.1). Therefore, it is necessary to 

provide a customized replacement for the CHEMKIN subroutine CKWYP that provides 

molar production and destruction rates for each species. Computer-assisted reduced 

mechanism (CARM) code can also be used to get the final reduced mechanisms in the 

form of a FORTRAN code that can be read in by CHEMKIN (Sung et al., 2001)  

4.3 Molecular Diffusivity 

The molecular diffusivity of H2 is almost three times that of methane (Andrea et 

al., 2004). It has been proposed that hydrogen’s high molecular diffusivity improves the 

homogeneity of the charge and increases turbulence thereby leading to improved 

combustion (Andrea et al., 2004). Here the influence of molecular diffusivity on steady, 

one-dimensional, laminar premixed flames has been investigated using two different 
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approaches. In the first scheme the diffusion coefficient of H2 was set equal to that of 

CH4, and in the second scheme the Lewis numbers (Le) of all the species in the reacting 

mixture were set to unity. The following equations pertain: 

,
D

Le
:

1  [4.1]

,
pC

k
9

: 1  [4.2]

where $ is the mixture thermal diffusivity, % is the mixture density, k is the mixture 

conductivity and Cp is the mixture specific heat.  

For this purpose changes were made in the CHEMKIN subroutines MCADIF, 

MCMDIF and MCSDIF that deal with the mixture-averaged diffusion coefficient, 

multicomponent diffusion coefficient and binary diffusion coefficient of the mixture, 

respectively. In all the cases Soret effect has been neglected by setting to zero the thermal 

diffusion coefficients calculated from subroutines MCATDR and MCMCDT. The 

baseline flame structure with species-dependent molecular diffusivities and Lewis 

numbers then is compared to the flame structures obtained with the modified transport 

coefficients. 

4.4 Exhaust Gas Recirculation (EGR) 

One method employed to reduce engine-out NOx emissions in an actual engine is 

to recirculate a portion of the exhaust gas back in the intake manifold. EGR reduces NOx 

by acting as an inert gas that absorbs some of the heat released in the combustion process, 

thereby lowering the temperature. Lower temperature reduces the thermal NO and that in 
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turn reduces the NO2 that is formed from the oxidation of NO. The EGR rate is controlled 

as a function of engine load and speed to ensure, for example, that there is no rough 

performance of the engine during the start-up or hard acceleration when the fuel is burned 

at close to stoichiometric conditions. In a production engine, up to 30% EGR (by volume) 

may be employed. In the present study, 20% of the intake mixture has been considered to 

be recirculated exhaust gas on a volumetric basis.  

An iterative process is necessary to determine the reactant composition that 

corresponds to a specified level of EGR. The product composition for 0% EGR is 

determined first; 20% by volume of that composition is added to the original fuel – air 

mixture. This results in a new product composition, and the reactant composition is 

revised accordingly. This process is continued until the product composition and 

temperature become constant; typically 5-6 iterations are required. The amount of 

exhaust gas that is required to be used for EGR is described in detail in section 4.6.3. 

Radicals have not been considered for EGR as their concentration is very low compared 

to other components of exhaust like CO2, H2O, NO, NO2, etc. 

4.5 Computational Issues 

In this section three computational issues are discussed briefly: the choice of 

CHEMKIN version, the value of TFIX (see Table 3-2), and the length of the 

computational domain. 
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4.5.1 CHEMKIN Version 

CHEMKIN II (Kee et al., 1996) and CHEMKIN 4.01 (Reaction Design, 2005) 

have been used for the present study. CHEMKIN II is the pre-commercial version 

developed by Sandia National Laboratory and CHEMKIN 4.01 is the current commercial 

version from Reaction Design. CHEMKIN II was preferred, as the output file “save.bin” 

produced by CHEMKIN II is compatible with XSENKPLOT while that from CHEMKIN 

4.01 is not compatible. Moreover, source code is available for CHEMKIN II. However, 

convergence problems were encountered in some cases with CHEMKIN II. CHEMKIN 

4.01 has been used for cases where there have been convergence problems using 

CHEMKIN II. In particular it was difficult to refine the mesh beyond GRAD and CURV 

values of 0.2 each with CHEMKIN-II. With these values of CURV and GRAD, the 

results from the PREMIX calculations sometimes were not consistent with the results 

from an EQUIL calculation (adiabatic flame temperature and equilibrium composition). 

With CHEMKIN 4.01, the CURV and GRAD values could be reduced to values as low 

as 0.01. Here it has been confirmed that the product composition and temperature from 

the PREMIX calculations were within 0.6% of the values obtained using EQUIL.  

For the studies where the molecular transport coefficients were altered, it was 

possible to obtain accurate results with the higher CURV and GRAD values. In these 

cases only CHEMKIN II has been used. 

 

142



51 

4.5.2 TFIX 

The baseline reactant conditions for the flame study are 598 K and eight 

atmospheres pressure. Under these conditions TFIX has been set to 600 K, slightly higher 

than the reactant temperature of 598 K. This is an appropriate choice as it is preferred to 

set the value of TFIX to be close to the reactant inlet temperature. It has been confirmed 

that results are not sensitive to the choice of TFIX. 

4.5.3 Flame Domain 

The computational domain extended from -0.5 cm to 10 cm in all cases. The large 

domain ensures that results are insensitive to the extent of computational domain and that 

even very slow reactions (e.g. those leading to formation of NO and NO2) approach 

equilibrium at the outflow boundary. 

4.6 Run Matrix 

In the present study flame structure has been compared for different compositions 

of fuel. The fuel composition has been varied by replacing CH4 molecules with H2 

molecules while keeping the energy content of the fuel mixture constant. Here the energy 

of the fuel mixture has been calculated based on lower heating values of CH4 and H2. The 

energy content has been kept constant to ensure a fair comparison for the IC engine 

application and to clearly separate thermal effects from kinetic and transient effects. The 

following equations are used to establish the global mixture stoichiometry (for ! £ 1): 
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a CH4 +  b H2 + c (O2 + 3.76N2) !  a CO2 + (2a+b) H2O + 

3.76c N2 +  

                                                            [c-(2 a +b/2)]O2 ,     

[4.3]

c = (1/!)*(2a +b/2). [4.4]

Here, ! is the equivalence ratio, and a, b and c denote moles of CH4, H2, and air (O2 + 

3.76 N2) respectively. The lower heating values for H2 and CH4 are respectively: 286 

kJ/mole and 802 kJ/mole (Andrea et al., 2005). Therefore, to keep the energy content of 

the fuel mixture constant while replacing CH4 with H2, the following equation pertains:  

802 a + 286 b = 6416. [4.5]

Here an arbitrary value for ‘a’ has been taken (a = 8) with b = 0. 

Reactant compositions for each of the three basic studies are presented in the 

following subsections. 

4.6.1 Varying Hydrogen Fraction For Fixed Equivalence Ratio 

Table 4-2 shows the equivalence ratios that have been investigated and the 

corresponding moles of each reactant. The study was done for each of four chemical 

mechanisms: ARM, GRI Mech 2.11, GRI Mech 3.0 and Glarborg. 
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Table 4-2: Reactant composition for fixed ! and constant energy.
Equivalence 

Ratio, ! 
a (CH4) b (H2) c (O2) 3.76c (N2) Hydrogen 

Fraction,  

! = b/(b+a) 

8.0000 0.0000 16.0000 60.1600 0 

6.9390 2.9740 15.3658 57.7757 0.3 

1 

4.3666 10.1887 13.8275 51.9917 0.7 

8.0000 0.0000 22.8570 85.9428 0 

6.9390 2.9740 21.9512 82.5367 0.3 

0.7 

4.3666 10.1887 19.7536 74.27389 0.7 

8.0000 0.0000 32.0000 120.3200 0 

6.9390 2.9740 30.7317 115.5514 0.3 

 

0.5 

4.3660 10.1887 27.6551 103.9834 0.7 

4.6.2 Molecular Diffusion Studies 

The influence of molecular diffusion has been investigated using two schemes, as 

described in Section 4.3. The equivalence ratios and corresponding hydrogen fractions 

for this study are shown in Table 4.3. The exact fuel – air composition can be obtained 

from Table 4.2. For each of these cases the flame structure with modified diffusion 

coefficients has been compared to the flame structure with the baseline multi-component 

diffusion model. 

Table 4-3: Cases for molecular diffusion study. 

Reaction Mechanism Equivalence Ratio ( ! ) Hydrogen Fraction ( " ) 

GRI Mech 3.0 1.0 0.7 

GRI Mech 2.11 0.3 0.3 

Glarborg 0.5 0.7 

ARM 0.7 0.7 
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4.6.3 EGR Studies 

For the EGR study equations [4.3] through [4.5] are augmented with the 

following equations: 

d = & n, [4.6]

d + e = n. [4.7]

Here, n is the total reactant moles input in the system, including EGR, d is the number of 

moles of exhaust gas that are input in the reactants for EGR on a molar basis, e is the 

number of reactant moles in the absence of EGR and & is the fraction of input moles to be 

supplied as EGR. For the present study an EGR rate of 20% (& = 0.20) has been 

considered. 

The EGR study included variation in the reaction mechanism, equivalence ratio ! 

and hydrogen fractions " as shown in Table 4-4 (for 20% EGR).  

Table 4-4: Cases for EGR study.

Reaction 

Mechanism 

Equivalence Ratio (!) Hydrogen Fraction (")

1 0.3 GRI Mech 3.0 

0.7 0.7 

Glarborg 0.7 0.7 

The number of moles of fuel, air and EGR are shown in Table 4-5. These 

calculations have been done using the equations [4.6] and [4.7]. The composition of EGR 

has been determined iteratively as discussed in Section 4.4.  
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Table 4-5: Reactant composition for EGR study. 

! " = b/(b+a) a  (CH4) b (H2) c (O2) 3.76c (N2) total moles, e moles of EGR, d

1 0.3 6.939 2.974 15.3658 57.7757 83.055 20.7637 

0.7 0.7 4.3666 10.188 19.753 74.2738 108.582 27.1457 
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Chapter 5 
 

Results 

5.1 Comparison Among Chemical Mechanisms 

Several chemical mechanisms available for use with CHEMKIN have been 

compared using PREMIX for flame structure characteristics and flame speed. The focus 

has been on key species including OH, CH3, H, NO, NO2, CH4, H2 and on temperature 

profiles. The chemical mechanisms that have been considered are: Glarborg, GRI-Mech 

2.11, GRI-Mech 3.0 and ARM; these have been discussed in detail in Section 4.2. 

Two important quantities associated with premixed flames are laminar flame 

speed and flammability limits. Laminar flame speed is defined as the velocity at which 

the reactants enter the stationary flame. The unburned gas is assumed to enter the flame 

in a direction normal to the flame sheet. Laminar flame speeds for a typical SI engine 

range from 50 cm/s to 100 cm/s (Heywood, 1988). For the present study, flammability 

limit has been defined empirically as the equivalence ratio where the laminar flame speed 

falls to 10 cm/s as lower values would correspond to unacceptably low combustion rates 

in IC engines. Fig 5-1 shows the laminar flame speed versus ! and " using the Glarborg 

mechanism. For ! ' 0.5, the flame speed exceeds 10 cm/s for all ". For ! < 0.5, the 

flame speed falls below 10 cm/s at lower values of ". 
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Fig. 5-1: Computed laminar flame speeds for H2/CH4 mixtures using the GRI 
Mech 3.0 mechanism, P = 8 atm, T = 598 K. 

5.1.1 Temperature Profiles  

Fig 5-2 shows the temperature profiles obtained from the four different reaction 

mechanisms. There are no significant changes in the temperature profiles among the 

reaction mechanisms. The reaction zone occurs earliest for the Glarborg mechanism and 

latest for GRI Mech 3.0; GRI Mech 2.11 and ARM are in between. The peak product 

temperature depends only on the thermodynamic properties, and is essentially the same 

for all mechanisms.  
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Fig. 5-2: Temperature profile comparison for different reaction mechanisms. P
= 8 atm, T = 598 K, ! = 1.0, " = 0.3. 

5.1.2 CH4, CH3 and OH 

Fig 5-3 shows comparison of CH4 profiles from different mechanisms. There is an 

increased consumption of CH4 for the Glarborg mechanism that is consistent with the 

earlier occurrence of the reaction zone for the Glarborg mechanism as indicated by Fig 5-

2. GRI Mech 3.0 shows the slowest chemistry. GRI Mech 2.11 and ARM mechanisms 

are again in between Glarborg and GRI Mech 3.0.  
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Fig. 5-3:  CH4 profile comparison for different reaction mechanisms. P = 8 atm, 
T = 598 K, ! = 1.0, " = 0.3. 

The earlier consumption of CH4 for the Glarborg mechanism leads to an earlier peak in 

CH3 concentration as shown in Fig 5-4. 

 
Fig. 5-4: CH3 profile comparison for different reaction mechanisms.  P = 8 atm, 
T = 598 K, ! = 1.0, " = 0.3. 
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It has been suggested that the rate - controlling step in the combustion of CH4 (Collier et 

al., 2005) is:  

CH4 + O ! CH3 + OH. [5.1]

However, this is not necessarily true as observed from Table 5-1 that compares the 

destruction flux of CH4 for two reactions. 

Table 5-1: Important reactions in the consumption of CH  (GRI Mech 3.0, ! = 
0.7 and " = 0.3, 0.7)

4

 " = 0.3 

(CH4 mole fractions / sec) 

" = 0.7 

(CH4 mole fractions / sec) 

OH+CH4<=>CH3+H2O -2.80E-02 -4.13E-02 

O+CH4<=>OH+CH3 -9.70E-03 -1.19E-02 

H+CH4<=>CH3+H2 -8.78E-03 -9.88E-03 

 
Fig 5-5 shows the consumption rate of CH4 through the first reaction in Table 5-1: 

 

OH + CH4 ! CH3 + H2O. [5.2]
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Fig. 5-5: Reaction rate profile comparison for different reaction mechanisms. P
= 8 atm, T = 598 K, ! = 1.0, " = 0.3. 

The reactions [5-1] and [5-2] have both been considered as controlling the consumption 

rate for CH4. The higher OH levels from the Glarborg mechanism as shown in Fig 5-6 

manifests itself in a higher rate for reactions [5-2] as shown in Figure 5-5. So, there is a 

higher and earlier consumption of CH4 to produce CH3 radicals for the Glarborg 

mechanism compared to GRI Mech 2.11, GRI Mech 3.0 and ARM.  
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Fig. 5-6: OH profile comparison for different reaction mechanisms. P = 8 atm, 
T = 598 K, ! = 1.0, " = 0.3. 

Figure 5-8 shows the consumption rate from three different mechanisms for CH4 through 

the third reaction from Table 5-1. 
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Fig. 5-7: Reaction rate profile comparison for different reaction mechanisms. P
= 8 atm, T = 598 K, ! = 1.0, " = 0.3. 

 

 
Fig. 5-8: Reaction rate profile comparison for different reaction mechanisms. P
= 8 atm, T = 598 K, ! = 1.0, " = 0.3. 
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5.1.3 NO 

Fig 5-9 shows the NO mole fraction profiles obtained from four reaction 

mechanisms. NO mole fractions are highest for the Glarborg mechanism although the 

differences are small in all cases. Fig 5-10 shows the NO mole fraction profiles through 

the reaction zone from the different reaction mechanisms. It can be seen that the reaction-

zone mole fraction is also highest initially for the Glarborg mechanism. The NO 

prediction from ARM is higher compared to the GRI-Mech 2.11 and GRI-Mech 3.0.  

 
Fig. 5-9: NO mole fraction comparison for different reaction mechanisms.  P = 
8 atm, T = 598 K, ! = 1.0, " = 0.3. 
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Fig. 5-10: Reaction zone NO mole fraction profiles for different reaction 
mechanisms. P = 8 atm, T = 598 K, ! = 1.0, " = 0.3. 

5.1.4 NO2

Fig 5-11 compares the NO2 mole fraction profiles for three different reaction 

mechanisms. It can be seen that the Glarborg mechanism gives the lowest NO2 mole 

fraction while GRI-Mech 3.0 gives the largest mole fraction. Fig 5-12 shows the NO2 

mole fraction profile through the reaction zone for three mechanisms. Again, the NO2 

mole fraction is lowest for the Glarborg mechanism. The ARM mechanism doesn’t 

include NO2 chemistry; hence it is absent from Figures 5-11 and 5-12.  
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Fig. 5-11: NO2 mole fraction profiles for different reaction mechanisms.  P = 8 
atm, T = 598 K, ! = 1.0, " = 0.3. 

 

 
Fig. 5-12: Reaction zone NO2 mole fraction profiles for different reaction 
mechanisms.  P = 8 atm, T = 598 K, ! = 1.0, " = 0.3. 
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The lower NO2 mole fraction from the Glarborg mechanism is consistent with the 

higher destruction rate of NO2 through the reactions [5-3] and [5-4]:  

NO2 + H ! NO + OH, [5.3]

NO2+O ! NO+O2. [5.4]

Figure 5-13 shows the comparison of destruction rates of NO2 through reaction [5-3] for 

three reaction mechanisms. It can be seen that the destruction rate is highest for the 

Glarborg mechanism. Similar behavior is seen for the other reactions involved in the 

destruction of NO2. It has been observed for the Glarborg mechanism that there has also 

been an increase in the reactions producing NO2, but the net production of NO2 is 

dominated by the reactions consuming NO2. Similar behavior is seen in the profile for 

reaction [5-4]. 

 
Fig. 5-13:  Reaction rate comparison for different reaction mechanisms. P = 8 
atm, T = 598 K, ! = 1.0, " = 0.3. 
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5.1.5 H2

Fig 5-14 shows the H2 mole fraction profiles for the four different reaction 

mechanisms. Consumption initially is highest for the Glarborg mechanism, is lower for 

GRI Mech 2.11, and is lowest for GRI Mech 3.0 to a point, after which the trend reverses.  

 
Fig. 5-14: H2 mole fraction profiles for different reaction mechanisms. P = 8 
atm, T = 598 K, ! = 1.0, " = 0.3. 

The mole fraction profiles for H2 can be understood from the reaction rates for the 

reactions:  

OH + H2 ! H + H2O, [5.5]

O + H2 ! H + OH. [5.6]
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Reactions [5-5] and [5-6] are the most important reactions for the consumption of H2 

(Table 5-2). The relative reaction rates have the same trend for all four reaction 

mechanisms considered. Other reactions that consume H2 have rates which are even 

smaller. 

Table 5-2: Important reactions in the consumption of H  for P = 8 atm, T = 
598K, 

2
! = 1.0, " = 0.3. 

Reactions Rates 
(mole fractions/sec) 

OH+H2<=>H+H2O -8.42E-02 

O+H2<=>H+OH -3.36E-02 

CH2(S)+H2<=>CH3+H -3.67E-05 

 

 
Fig. 5-15: Reaction rate profiles for different reaction mechanisms. P = 8 atm, 
T = 598 K, ! = 1.0, " = 0.3. 

 

161



70 

Reaction [5-5] is completed earlier for Glarborg compared to GRI Mech 2.11 and GRI 

Mech 3.0 (Fig 5-15). This accounts for the different H2 mole fractions from the different 

reaction mechanisms. The pattern is same for reaction [5-6] (Fig 5-16). The ARM 

mechanism doesn’t include the elementary reaction [5-6] so it has not been included in 

Figures 5-15 and 5-16. 

 
Fig. 5-16:  Reaction rate profiles for different reaction mechanisms.  P = 8 atm, 
T = 598 K, ! = 1.0, " = 0.3. 

Similar behavior was observed for other equivalence ratios and for other ratios of 

CH4 to H2 when the different mechanisms were compared. 

5.2 Variation in Hydrogen Fraction 

The approach has been described in detail in Section 4.6.1. Comparisons have been done 

for the four reaction mechanisms described in Section 4.2. For these mechanisms, the 
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compositions considered were " = 0.0, 0.3 and 0.7 for each of ! = 1, 0.7 and 0.5. Here 

results are presented for ! = 0.7, " = 0, 0.3 and 0.7 using GRI Mech 3.0. For other 

mechanisms and equivalence ratios the character of the curves is similar.  

5.2.1 Temperature 

The temperature profiles for different " are shown in Fig 5-17.  

 
Fig. 5-17: Temperature profiles for different ". P = 8 atm, T = 598 K, ! = 0.7, 
reaction mechanism - GRI Mech 3.0. 

The peak temperature occurs earlier for higher " implying an earlier occurrence of the 

reaction zone with an increase in the hydrogen content of the fuel mixture. The peak 

temperature, however, remains the same as the energy content is the same for all values 

of ". 
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5.2.2 CH4 and H2 Mole Fractions 

 Figures 5-18 and 5-19 show the CH4 and H2 mole fraction profiles for different 

". There is an earlier and faster consumption of CH4 and H2 with increasing ", which is 

consistent with the earlier occurrence of the reaction zone that was noted in Fig 5-17. 

 
Fig. 5-18: CH4 mole fraction profiles for different ". P = 8 atm, T = 598 K, ! = 
0.7, reaction mechanism - GRI Mech 3.0. 
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Fig. 5-19: H2 mole fraction profiles for different ". P = 8 atm, T = 598 K, ! = 
0.7, reaction mechanism - GRI Mech 3.0. 

 

The reaction steps that control the rate of consumption of CH4 are reactions [5-1] and [5-

2]. The reaction rates for these reactions for different " are plotted in Fig 5-20 and Fig 5-

21.  
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Fig. 5-20: Reaction rate profiles for reaction [5-2] for different ". P = 8 atm, T
= 598 K, ! = 0.7, reaction mechanism - GRI Mech 3.0. 

The peak reaction rates are higher and the reactions occur earlier with increasing ". This 

explains the increase in consumption rate of CH4 with higher H2 content. Similarly, there 

has been an increase in the rate of other reactions involved in the consumption of CH4 as 

shown in Figures 5-21 and 5-22.  
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Fig. 5-21: Reaction rate profiles for reaction [5-1] for different ". P = 8 atm, T
= 598 K, ! = 0.7, reaction mechanism - GRI Mech 3.0. 

 

 
Fig. 5-22: Reaction rate profiles for different ". P = 8 atm, T = 598 K, ! = 0.7, 
reaction mechanism - GRI Mech 3.0. 
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5.2.3 OH radicals 

Reaction [5-2] shows the significance of OH in the consumption of CH4. OH mole 

fraction profiles for different " are shown in Fig 5-23. 

 
Fig. 5-23: OH mole fraction profiles for different ". P = 8 atm, T = 598 K, ! = 
0.7, reaction mechanism - GRI Mech 3.0. 

The relative flux of OH for different reactions is shown in Table 5-3 for " = 0.3 and 0.7. 
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Table 5-3: Important reactions for the production of OH (OH mole fraction / 
sec)

 
 

" = 0.3 "  = 0.7 

H+O2<=>O+OH 1.05E-01 1.11E-01 

H+HO2<=>2OH 1.86E-02 3.17E-02 

O+H2<=>H+OH 1.40E-02 2.82E-02 

O+CH4<=>OH+CH3 1.19E-02 9.70E-03 

HO2+CH3<=>OH+CH3O 1.10E-02 7.19E-03 

O+HO2<=>OH+O2 3.57E-03 - 

O+CH2O<=>OH+HCO 3.28E-03 - 

CH2+O2=>OH+H+CO 3.03E-03 - 

From Table 5-3 it can be concluded that there has been a factor of two increase in the 

production of OH radicals with an increase in " from 0.3 to 0.7 through the reaction: 

O + H2 ! H + OH. [5.7]

The relative flux of OH has reduced for some reactions but these reductions are 

compensated by the increase in the flux through reaction [5-7]. The increase in OH leads 

to earlier and faster break up of CH4 molecules to produce CH3 through reaction [5-2], 

and hence the reaction zone occurs earlier for higher ". 
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5.2.4 O Radicals 

 
Fig. 5-24: O mole fraction profiles for different ". P = 8 atm, T = 598 K, ! = 
0.7, reaction mechanism - GRI Mech 3.0. 

Fig 5-24 shows the O mole fractions profiles for different ". There is an increase 

in O mole fraction with increasing ".  

Table 5-4 shows the relative flux of O for different reactions for three values of ". 

Table 5-4: Important reactions for the production of O (O mole fractions / sec)
 " = 0.0 " = 0.3 " = 0.7 

H+O2<=>O+OH 1.70E-03 1.05E-01 1.11E-01 

CH2+O2<=>O+CH2O 1.05E-01 1.45E-03 - 

The relative flux of O increases 100 times as " increases from 0.0 to 0.7 due to the 

reaction: 

H+O2<=>O+OH. [5.8]
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Therefore, the increase in the O mole fraction can be attributed to the increase in the 

significance of the reaction [5-8].  

5.2.5 H radicals 

Table 5-5 shows the relative flux for production of H radicals for different ". 

Table 5-5: Important reactions involving production of H (H mole 
fractions/sec)

 " = 0.0 " = 0.3 " = 0.7 

OH+CO<=>H+CO2 6.81E-02 6.62E-02 5.02E-02 

OH+H2<=>H+ H2O 3.00E-02 5.00E-02 1.05E-01 

O+CH3<=>H+CH2O 1.36E-02 1.31E-02 1.10E-02 

H+CH2O(+M)<=>CH3O(+M) 1.11E-02 1.00E-02 6.25E-03 

HCO+H2O<=>H+CO+H2O 1.07E-02 9.83E-03 6.99E-03 

HCO+M<=>H+CO+M 1.04E-02 8.99E-03 5.49E-03 

O+ H2<=>H+OH 9.64E-03 1.40E-02 2.82E-02 

O+CH3=>H+ H2+CO 9.04E-03 8.71E-03 7.33E-03 

CH2+O2=>2H+CO2 8.21E-03 7.03E-03 4.19E-03 

CH2+O2=>OH+H+CO 3.54E-03 3.03E-03  

CH2(S)+O2<=>H+OH+CO 2.75E-03 2.43E-03  

H+C2H4(+M)<=>C2H5(+M) 2.16E-03   
 

  
The increase in OH radical concentration increases the production of H radicals through 

reaction OH + H2 ! H + H2O (Table 5-5). This increase in H radical (Fig 5-25) can 

further accelerate the production of OH radicals through the reactions H + O2 ! O + OH 

and H + HO2 ! 2OH. The increase in O radicals further accelerates OH production 

through O + H2 ! H + OH. Higher OH and O lead to more rapid consumption of CH4 
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through reactions [5-1] and [5-2]. This process is self-supporting and becomes stronger 

for higher H2 levels. 

 
Fig. 5-25: H mole fraction profiles for different ". P = 8 atm, T = 598 K, ! = 
0.7, reaction mechanism - GRI Mech 3.0. 

5.2.6 O2 Mole Fraction 

O2 mole fraction profiles for different " are shown in Fig 5-26. The earlier O2 

consumption with increasing " is consistent with the earlier production of O radicals and 

the earlier occurrence of the reaction zone for higher ". 
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Fig. 5-26: O2 mole fraction profiles for different ". P = 8 atm, T = 598 K, ! = 
0.7, reaction mechanism - GRI Mech 3.0. 

5.2.7 NO Mole Fraction 

Fig 5-27 shows NO mole fraction profiles for different ". The horizontal portion 

of the curve at the location 8 cm refers to the equilibrium concentration of NO. The 

equilibrium concentration is different for different ". The straight - line nature of the 

curve can be attributed to the coarse grid structure near the boundary. 
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Fig. 5-27: NO mole fraction profiles for different ". P = 8 atm, T = 598 K, ! = 
0.7, reaction mechanism - GRI Mech 3.0. 

The relative importance of different reactions in NO formation and destruction is shown 

in Table 5-6. 

Table 5-6: Important reactions involved in the production and consumption of 
NO (NO mole fraction / sec).

Production  Consumption  
N+O2<=>NO+O 2.30E-04 N+NO<=>N2+O -2.84E-04 
N2O+O<=>2NO 5.23E-05 NH+NO<=>N2O+H -1.82E-05 
N+OH<=>NO+H 4.37E-05 NO+O+M<=>NO2+M -8.76E-06 
NO2+H<=>NO+OH 1.35E-05 HO2+NO<=>NO2+OH -7.43E-06 
N+CO2<=>NO+CO 1.31E-05 H+NO+M<=>HNO+M -5.71E-07 

  CH2+NO<=>H+HNCO -4.70E-07 
  HCCO+NO<=>HCNO+CO -2.55E-07  
                                                       (! = 0.7, " = 0.3, reaction mechanism – GRI 

These reactions occur earlier and faster for higher ". But the increase in rates of reactions 

producing NO with increasing " is dominated by the increase in the rates of reactions 
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consuming NO resulting in a net drop in the NO mole fraction. Among the most 

significant consumption reactions is the increase in the rate of: 

H + NO + M ! HNO + M. [5.9]

This is shown in Fig 5-28. 

 
Fig. 5-28: Reaction rate profiles for different ". P = 8 atm, T = 598 K, ! = 0.7, 
reaction mechanism - GRI Mech 3.0. 

5.2.8 NO2 Mole Fraction 

Reactions involved in the production and destruction of NO2 are shown in Table 

5-7. 

 

 

 

175



84 

Table 5-7:  Important reactions in the production and destruction of NO  (NO2 2
mole fractions / sec).

 " = 0.7 " = 0.3 " = 0 
Creation    
NO+O+M<=>NO2+M 6.82E-06 8.38E-06 8.76E-06 
HO2+NO<=>NO2+OH 4.21E-06 6.50E-06 7.43E-06 

    
Destruction    
NO2+H<=>NO+OH -9.10E-06 -1.24E-05 -1.35E-05 
NO2+O<=>NO+O2 -6.11E-07 -9.14E-07 -1.03E-06 

There is no change in the relative importance of the reactions for different ". However, 

NO2 mole fraction reduces with increasing " as shown in Figs 5-29 and 5-30. 

 
Fig. 5-29: Reaction - zone NO2 mole fraction profiles for different ".   P = 8 
atm, T = 598 K, ! = 0.7, reaction mechanism - GRI Mech 3.0. 

   

 

176



85 

 
Fig. 5-30: NO2 mole fraction profiles for different ". P = 8 atm, T = 598 K, ! = 
0.7, reaction mechanism - GRI Mech 3.0. 

In Fig 5-30 the horizontal portion of the curve at location 8 cm refers to the equilibrium 

concentration of NO2. The discontinuous nature of the curve is due to the coarse grid near 

the outflow boundary. 

Figures 5-31 through 5-33 show several reactions involved in the production and 

destruction of NO2.  
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Fig. 5-31: Reaction rate profiles for different ". P = 8 atm, T = 598 K, ! = 0.7, 
reaction mechanism - GRI Mech 3.0. 

 

 
Fig. 5-32: Reaction rate profiles for different ". P = 8 atm, T = 598 K, ! = 0.7, 
reaction mechanism - GRI Mech 3.0. 
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Fig. 5-33: Reaction rate profiles for different ". P = 8 atm, T = 598 K, ! = 0.7, 
reaction mechanism - GRI Mech 3.0. 

There is an increase in the rate of reactions producing and consuming NO2 with 

increasing ", but the net result is lower NO2 with increasing ". 

5.3 Diffusion of Hydrogen 

The molecular diffusion coefficient of hydrogen is higher than that for 

hydrocarbons (Andrea et al., 2004) and changes in flame character in the presence of 

hydrogen have been attributed to its high diffusivity (Glassman, 1996; Sobiesiak, et al., 

2002). In this section the effect of hydrogen’s high molecular diffusivity on premixed, 

steady, one-dimensional laminar flames is discussed. Two cases having modified 

transport coefficients (Section 4.3) are compared to a baseline (“normal”) flame with the 

standard CHEMKIN/TRANSPORT multicomponent diffusion model. The diffusion 
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coefficient of hydrogen is reduced by 71.03% when its Lewis number (and all others) is 

set to unity while it is reduced by 70.02% when set equal to the diffusion coefficient of 

CH4. Here results are presented for reaction mechanism GRI Mech 3.0 with ! = 0.7 and 

" = 0.3. For other reaction mechanisms and compositions the conclusions are essentially 

the same. The results from PREMIX calculations in principle should be same as the 

EQUIL results but due to numerical error, the final solution has error up to 1% when 

compared to the EQUIL calculations. 

5.3.1 Laminar Flame Speed 

There was no significant change in the laminar flame speed when the diffusion 

coefficient for the species has been changed. The laminar flame speed remained 41.52 

cm/s when the diffusion coefficient of H2 was set equal to the diffusion coefficient of 

CH4. However, when the Le has been set to unity for all the species the laminar speed 

increases to 45.91 cm/s. 

5.3.2 Temperature  

Fig 5-34 shows the temperature profiles for flames with modified diffusion 

coefficients compared to the normal flame. There is no noticeable change in the 

temperature profile when the diffusion coefficient of hydrogen is set equal to that for 

methane. When the Lewis numbers are set to unity for all species, the reaction zone 

occurs earlier but there is no other significant difference. 
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Fig. 5-34: Temperature profiles for three diffusion cases. P = 8 atm, T = 598K, 
! = 0.7, " = 0.3, reaction mechanism - GRI Mech 3.0. 

5.3.3 CH4 and CH3

Figure 5-35 shows the CH4 mole fraction profiles for the three cases considered. 
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Fig. 5-35:  CH4 mole fraction profiles for three diffusion cases. P = 8 atm, T = 
598K, ! = 0.7, " = 0.3, reaction mechanism - GRI Mech 3.0. 

There are no significant differences in the mole fraction profiles when the diffusion 

coefficient of hydrogen is set equal to that of methane. When the Lewis numbers are set 

to unity, the reaction zone occurs earlier but the change is not large. Similar behavior is 

seen for CH3 in Fig 5-36. There is a small increase in CH3 mole fraction when the Lewis 

number is set to unity for all species. 
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Fig. 5-36: CH3 mole fraction profiles for three diffusion cases. P = 8 atm, T = 
598K, ! = 0.7, " = 0.3, reaction mechanism - GRI Mech 3.0. 

5.3.4 OH  

Figure 5-37 shows the OH mole fraction profiles for the three cases. There is no 

change in the OH mole fraction by setting the diffusion coefficient of hydrogen equal to 

the diffusion coefficient of methane. OH mole fraction increases and the peak occurs 

earlier when the Lewis numbers are set to unity for all species. However, the change is 

not significant. 
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Fig. 5-37:  OH mole fraction profiles for three diffusion cases. P = 8 atm, T = 
598K, ! = 0.7, " = 0.3, reaction mechanism - GRI Mech 3.0. 

5.3.5 NO and NO2 mole fractions 

Figure 5-38 compares the NO mole fraction profiles for the three molecular 

diffusion cases over the entire computation domain. The NO mole fractions are slightly 

higher when the Lewis numbers are unity for all species compared to the baseline case 

and to the case where the diffusion coefficient of hydrogen is set equal to that for 

methane. The horizontal part of the curve at the location 8-10 cm indicates the 

equilibrium mole fraction. The discontinuity in the curve is due to the coarse grid at the 

boundary. 
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Fig. 5-38:  NO mole fraction profiles for three diffusion cases. P = 8 atm, T = 
598K, ! = 0.7, " = 0.3, reaction mechanism - GRI Mech 3.0. 

 

 
Fig. 5-39: Reaction - zone NO mole fraction profiles for three diffusion cases.
P = 8 atm, T = 598K, ! = 0.7, " = 0.3, reaction mechanism - GRI Mech 3.0. 
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Figure 5-39 shows the NO mole fraction profiles in the reaction zone. Again, 

there is no noticeable change in the NO mole fraction profile when the diffusion 

coefficient of hydrogen is set equal to that for methane. When the Lewis numbers are set 

to unity, the NO mole fraction increases but the increase is not large. 

 
Fig. 5-40:  NO2 mole fraction profiles for three diffusion cases. P = 8 atm, T = 
598K, ! = 0.7, " = 0.3, reaction mechanism - GRI Mech 3.0. 

 Figures 5-40 and 5-41 show the NO2 mole fraction profiles. The NO2 mole 

fraction is larger for cases where the diffusion coefficient of hydrogen has been reduced 

through the two schemes discussed earlier compared to the normal case, but the increase 

is not significant. 
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Fig. 5-41: Reaction - zone NO2 mole fraction profiles for three diffusion cases.
P = 8 atm, T = 598K, ! = 0.7, " = 0.3, reaction mechanism - GRI Mech 3.0. 

5.3.6 H2 and H mole fractions 

H2 mole fraction profiles for the three cases are shown in Fig 5-42. The initial rate 

of consumption is higher for the baseline case. However, the overall consumption pattern 

remains the same. 
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Fig. 5-42: H2 mole fraction profiles for three diffusion cases. P = 8 atm, T = 
598K, ! = 0.7, " = 0.3, reaction mechanism - GRI Mech 3.0. 

 

 
Fig. 5-43:  H mole fraction profiles for three diffusion cases. P = 8 atm, T = 
598K, ! = 0.7, " = 0.3, reaction mechanism - GRI Mech 3.0. 
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Figure 5-43 shows the H mole fraction profiles for three cases. There is increased 

production of H radicals when the diffusion coefficient of H2 is reduced through either of 

the two schemes discussed earlier.  

From these results, it can be concluded that there is no significant change in the 

reaction zone structure when the diffusion coefficient of hydrogen is reduced through 

either of the two schemes discussed earlier. However, different conclusions can be 

expected for unsteady and multi-dimensional flames (Glassman, 1996). 

5.4 EGR Studies  

NOx emissions from an actual engine can be reduced by recirculating some of the 

exhaust gas back into the intake manifold. Exhaust gas is chemically nonreactive and acts 

as a diluent for the fuel-air mixture. It absorbs some of the heat that is released and also 

effectively reduces the equivalence ratio of the reactant mixture (depending on how it is 

introduced). The reduced temperature reduces the formation of thermal NO and hence the 

engine-out NOx decreases with EGR. 

A number of test cases were performed for different ! and ". Here detailed 

results are shown for ! = 0.7, " = 0.7 using GRI Mech 3.0. The EGR flame is compared 

to a baseline flame with no EGR (“normal”). Qualitatively similar results are found for 

the other mechanisms and thermochemical conditions. 
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5.4.1 Laminar Flame Speed 

For the case of ! = 0.7 and " = 0.7 using GRI Mech 3.0, the laminar flame speed 

reduces from 71.64 cm/s to 25.94 cm/s when 20% of intake is considered to be exhaust 

gas. Similarly, the laminar flame speed is reduced for other combinations of " and ! 

using reaction mechanisms GRI Mech 2.11, Glarborg and ARM, when 20% of intake was 

considered to be exhaust gas. 

5.4.2 Temperature profile 

Figure 5-44 shows the temperature profiles for EGR and normal flames. 

 
Fig. 5-44: Temperature profiles for EGR and normal flames. P = 8 atm, T = 
598 K, ! = 0.7, " = 0.7, reaction mechanism - GRI Mech 3.0. 

The peak temperature drops and the reaction zone is delayed for the EGR flame.  
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5.4.3 CH4 and CH3 Mole Fraction Profiles 

Figures 5-45 and 5-46 show the mole fraction profiles for CH4 and CH3. Because 

of the delay in the occurrence of the reaction zone with EGR, the consumption of CH4 is 

delayed, and hence the formation of CH3, with EGR. 

 
Fig. 5-45: CH4 mole fraction profiles for EGR and normal flames. P = 8 atm, T
= 598 K, ! = 0.7, " = 0.7, reaction mechanism - GRI Mech 3.0. 
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Fig. 5-46: CH3 mole fraction profiles for EGR and normal flames. P = 8 atm, T
= 598 K, ! = 0.7, " = 0.7, reaction mechanism - GRI Mech 3.0. 

5.4.4 OH Mole Fraction  

OH mole fraction profiles are shown for EGR and normal flames in Fig 5-47. 

Because of the delay in the reaction zone with EGR, the occurrence of OH radical in the 

flame is delayed. The peak OH mole fraction is also lowered with EGR. Delayed and 

reduced mole fraction of OH slows down the rate-controling reaction [5-2] involved in 

the consumption of CH4, consistent with Fig 5-45. 
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Fig. 5-47: OH mole fraction profiles for EGR and normal flames. P = 8 atm, T
= 598 K, ! = 0.7, " = 0.7, reaction mechanism - GRI Mech 3.0. 

5.4.5 O Mole Fraction Profile 

Figure 5-48 shows the O mole fraction profiles for the normal and EGR flames. 

The peak for the EGR profile is lower compared to the normal flame. Oxygen atoms are 

important in the consumption of CH4 through reaction [5-1], producing CH3. Due to 

reduction in the O mole fraction the consumption rate of CH4 is reduced as shown in Fig 

5-45. Hence the mole fraction of CH4 and CH3 flames is reduced as shown in Fig 5-45 

and 5-46. 
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Fig. 5-48: O mole fraction profiles for EGR and normal flames. P = 8 atm, T = 
598 K, ! = 0.7, " = 0.7, reaction mechanism - GRI Mech 3.0. 

5.4.6 H2 and H Mole Fraction Profile 

Figures 5-49 and 5-50 show the H2 and H mole-fraction profiles for normal and 

EGR flames. From Table 5-2, it is seen that reactions important in the consumption of H2 

involve the presence of OH and O radicals. Hence a reduction in OH and O mole 

fractions leads to a lower consumption rate of H2 as shown in Fig 5-49. 

Another result of the reduction in OH mole fraction is reduced production of H 

through the important reaction OH + H2 ! H + H2O and hence the EGR flame has lower 

H mole fraction compared to the normal flame, as shown in Fig 5-50. 
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Fig. 5-49: H2 mole fraction profiles for EGR and normal flames. P = 8 atm, T = 
598 K, ! = 0.7, " = 0.7, reaction mechanism - GRI Mech 3.0. 

 

 
Fig. 5-50: H mole fraction profiles for EGR and normal flames. P = 8 atm, T = 
598 K, ! = 0.7, " = 0.7, reaction mechanism - GRI Mech 3.0. 
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5.4.7 NO and NO2 mole fraction  

Figures 5-51 and 5-52 show the NO mole fraction profiles for EGR and normal 

flames. EGR causes a reduction in the flame temperature (Fig 5-44) and this leads to a 

reduction in thermal NO. 

 
Fig. 5-51: NO mole fraction profiles for EGR and normal flames. P = 8 atm, T
= 598 K, ! = 0.7, " = 0.7, reaction mechanism - GRI Mech 3.0. 
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Fig. 5-52:  NO mole fraction profiles for EGR and normal flames for the
reaction zone.  P = 8 atm, T = 598 K, ! = 0.7, " = 0.7, reaction mechanism -
GRI Mech 3.0. 

Fig 5-52 shows the NO concentration in the reaction zone. NO concentration for the EGR 

flame is higher initially, as some NO is present in the reactants through the EGR. 

However, there is a sudden reduction in the NO mole fraction for the EGR flame, due to 

the oxidation of NO to NO2. This causes an increase in the NO2 mole fraction as shown 

in Fig 5-53. 
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Fig. 5-53: NO2 mole fraction profiles for EGR and normal flames for the
reaction zone.   P = 8 atm, T = 598K, ! = 0.7, " = 0.7, reaction mechanism -
GRI Mech 3.0. 

Fig 5-54 shows the NO2 mole-fraction profiles comparison for EGR and normal 

flames over the entire flame. The final NO2 mole fraction is lower for the EGR flame. As 

discussed in Section 5.1.4, production of NO2 is through oxidation of NO. Hence, the 

reduction in NO mole fraction (Fig 5-51) causes a reduction in NO2 mole fraction. 
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Fig. 5-54: NO2 mole fraction profiles for EGR and normal flames. P = 8 atm, T
= 598K, ! = 0.7, " = 0.7, reaction mechanism - GRI Mech 3.0. 
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Chapter 6 
 

Conclusions and Future Work 

6.1 Conclusions 

In this work, CHEMKIN  and PREMIX have been used to study one - 

dimensional, premixed, laminar and steady - state flames under IC - engine conditions (P 

= 8 atm and T = 598 K). The basic aim of the study has been to understand the behavior 

of flames with varying levels of H2 in H2/CH4 fuel mixtures. For this study the energy 

content of the fuel mixture has been kept constant to ensure a fair comparison for IC - 

engine applications and to clearly separate the thermal effects from kinetic and transport 

effects. 

Three basic studies have been performed. In the first, laminar flame structures 

from four different reaction mechanisms have been compared. The reaction mechanisms 

considered are Glarborg, GRI Mech 2.11, GRI Mech 3.0 and ARM. The peak 

temperature remains the same for all the four mechanisms but the reaction zone occurs 

earliest for Glarborg mechanism and latest for GRI Mech 3.0. GRI Mech 2.11 and ARM 

have reaction zones at intermediate locations. Similarly, the consumption of CH4 and H2 

and the formation of intermediate species occur earliest for the Glarborg mechanism and 

latest for GRI Mech 3.0 with ARM and GRI Mech 2.11 in between. NO formation is 

similar for the four reaction mechanisms while NO2 formation is highest with GRI Mech 

3.0. NO2 formation is lowest with the Glarborg mechanism and is intermediate for GRI 

Mech 2.11. ARM does not incorporate NO2 chemistry. 
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In the second study, the fraction of H2 in H2/CH4 fuel blends (") has been varied 

while keeping the energy content and equivalence ratio (!) constant. It has been observed 

that for higher ", the reaction zone occurs earlier. So, under higher concentration of H2 in 

the fuel mixture there is an increased rate for the consumption of CH4. Thus key 

intermediate species form earlier for higher ", and CH4 consuming reactions [5-1] and 

[5-2] have an increased rate and occur earlier for higher ". It has been found that in 

addition to the reaction [5-2] that has been proposed by Collier et al. (2005) as the rate - 

controlling reaction in the consumption of CH4, reaction [5-1] becomes rate - controlling 

for higher ". While the ratio of several different reactions contributing to the production 

and consumption of NO increase with increasing ", the increased rate for consumption 

reaction [5-9] dominates resulting in a net decrease in the mole fraction of NO with 

increasing ". 

The third study focused on the high molecular diffusivity of hydrogen. For this 

study two schemes were adopted. In the first scheme the diffusion coefficient of H2 was 

set equal to the diffusion coefficient of CH4. In the second scheme the Lewis numbers 

were set to unity for all the species in the reaction mixture. No significant changes in the 

flame structure were observed when the diffusion coefficients of the species were 

changed according to the two schemes. However, the conclusions are expected to be 

different for unsteady and/or multidimensional flames. 

In the fourth study, the impact of exhaust - gas recirculation was investigated. 

Here 20% of the intake mixture was considered to be the products of combustion. EGR 

changed the flame structure and reduced the peak temperature. The consumption rates of 

CH4 and H2 were reduced with EGR and the concentrations of intermediate species OH, 
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CH3 and O were reduced and there was a delayed occurrence of their peaks. NOx 

formation was also reduced with EGR. NO formation reduced as a result of the lower 

temperature. NO2 mole fractions initially were higher in the reaction zone due to the 

oxidation of NO in the reactants with EGR, but final NO2 values were lower with EGR. 

6.2 Future Work 

The present work focused on laminar, one - dimensional, premixed, steady - state 

flames under IC - engine conditions. However, IC engine flames are turbulent, multi 

dimensional and unsteady. Future work should move towards unsteady and/or 

multidimensional premixed flames. Eventually, the outcomes of these fundamental flame 

studies must be distilled into models that can be applied to multidimensional CFD for 

realistic engine configurations. There it will not be feasible to account explicitly for 

detailed chemical kinetics and molecular transport. 
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ABSTRACT 

The “Freedom Car” Initiative enacted by the Bush Administration has placed 

significant emphasis on the development of a hydrogen economy in the United States. 

While hydrogen fuel-cell vehicles have been the focus of recent media attention, near 

term implementation of hydrogen as a combustion enhancer is a more reliable pathway 

for wide-scale hydrogen utilization within the next ten years. Through combustion 

analysis, hydrogen addition to natural gas has shown to increase thermal efficiency and 

reduce CO, NO and hydrocarbon emissions (UHC) in studies on stationary test cell 

engines. On-road vehicle studies testing hydrogen-natural gas blends show emissions 

benefits and increase in fuel economy. However, on-road tests lack exhaustive 

combustion analysis to explain what is occurring in the cylinder. In this study, the effect 

of a 33 percent volumetric blend of hydrogen (HCNG) on natural gas combustion was 

investigated in a 5.4L spark-ignited engine in a Ford E-250 van. In-cylinder combustion 

analyses were performed and untreated exhaust emissions were measured at 15 and 30 

mph with road loads of 10, 20 and 30 horsepower. Hydrogen increased the flame speed 

reducing time for flame kernel development and combustion duration. However, the 

hotter burn lost more heat to the surroundings and thermal efficiency of HCNG was 

lower than natural gas. Increasing engine speeds magnified reduction in combustion 

duration created by hydrogen. As load on the engine increased, hydrogen-influenced 

reduction on burn time was reduced. Heat and throttling losses reduced the thermal 

efficiency of the combustion. More complete combustion with hydrogen reduced carbon-

based emissions and bulk cylinder temperature increase drove increased NO formation. 
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Chapter 1 
 

Introduction 

1.1 Motivation 

Over the past decades natural gas has become a popular alternative fuel for the 

growing transportation sector. Light-duty vehicles running on natural gas represent a 

maturing technology, while natural gas heavy-duty transit vehicles are popular in urban 

areas. As a fuel source for large scale for transportation needs, natural gas provides 

advantages in automotive technology because of its emissions benefits in comparison 

with diesel and gasoline engines. The chemical structure of the fuel is advantageous as 

the carbon-hydrogen bonds in methane reduce carbon dioxide emissions per unit of 

energy compared diesel and gasoline. 

However, there are several drawbacks with natural gas engines, particularly in 

efficiency and emissions as engines must meet increasingly stringent U.S. government-

mandated requirements. Among hydrocarbons, methane, the main component in natural 

gas, has the slowest flame speed [1]. This reduces thermal efficiency by increasing 

energy losses due to heat transfer. Because of less efficient burning, significant amounts 

of methane remain in the exhaust after a combustion cycle is completed. The unburned 

methane expelled to the atmosphere can negate the fuels reduction in carbon dioxide 

emissions because it has 21 times the global warming potential [2] of carbon dioxide. 

Another issue in natural gas engines is maintaining proper engine control with varying 
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fuel composition. Hydrocarbon content in natural gas can vary, with the volumetric 

content of methane ranging from 70 to 96 percent. The Electronic Control Unit (ECU) 

adjusts the intake composition and spark timing based on an incorrect assumption of fuel 

energy, creating combustion conditions that reduce engine efficiency.  

Other conditions which the natural gas vehicle industry must deal with include 

fuel storage, distribution, and safety issues. Fuel storage tanks require aggressive safety 

features such as stainless steel or carbon fiber tanks, which increase vehicle weight. Lack 

of appropriate gaseous fuel infrastructure prevents effective distribution to the entire 

population. Safety considerations sway public opinion which slows steps in research and 

development of this technology [3].  

Despite these drawbacks and hindrances, some advances are being made in 

advocating the development of natural gas and alternative fuels. The “FreedomCAR 

(Cooperative Automotive Research)” initiative enacted in January 2002, as well as the 

Hydrogen Fuel Initiative announced by the Bush Administration in January 2003, places 

a significant emphasis on the development of the hydrogen economy (developing fuel 

cells and designing the necessary infrastructure for producing, storing, and distributing 

hydrogen) in the United States. While current technology and infrastructure does not lend 

itself to a commercial hydrogen economy, “hydrogen-assisted” combustion is a more 

realizable pathway for large-scale hydrogen utilization in the near future. 

Despite the large amount of resources currently being devoted to hydrogen 

technology research, near-term implementation of hydrogen in the transportation sector is 

not yet a reality. To further research in this area and as part of The Pennsylvania State 

University’s initiative towards a hydrogen economy, a partnership between the 
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university, Air Products, and Collier Technologies has resulted in the creation of 

hydrogen and hydrogen-compressed natural gas vehicles and a fueling station for use in 

university transportation and for research needs. 

The potential of hydrogen to increase indicated thermal efficiency and reduce 

emissions in natural gas combustion has been investigated for several reasons. First, 

natural gas and hydrogen blend uniformly because they are both in a gaseous state at 

standard temperature and pressure. Hydrogen has a higher stoichiometric laminar flame 

speed in air than methane. Literature states [4] that an increase in laminar flame speed has 

been shown to reduce the flame initiation stage of combustion. This effect is even more 

pronounced at light-load conditions, where combustion duration is the longest. Another 

advantage of hydrogen is that it increases the stability of combustion at leaner burn 

mixtures, a characteristic that has been extensively researched in natural gas combustion. 

Finally, hydrogen and methane mixtures have been shown to slightly reduce pumping 

losses in the engine increasing the   [5].  

1.2 Objectives of Research 

The objective of this research is to determine the in-cylinder combustion 

performance of natural gas and a hydrogen-natural gas blend in a vehicle equipped to 

operate using either fuel. The plan calls for the research vehicle to be run at a set vehicle 

speed and varying load conditions. The resulting combustion performance is measured to 

determine the effect of hydrogen on natural gas combustion. Hydrogen addition has been 

shown to have a positive effect on combustion and emissions in the literature, and 
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correlations will be drawn that evaluate if these hold true in the data obtained in this 

study. The hypothesis of this research is that, like in test cell engine research, hydrogen 

will decrease the combustion duration, increasing the indicated thermal efficiency of the 

engine, while reducing carbon monoxide and unburned hydrocarbons emissions. 

Increased gas temperatures will increase NO output. 

1.3 Summary of Tasks 

Due to the compactness of the efficient modern day vehicle, data acquisition 

instrumentation hardware had to be built around tightly packaged engine components. 

Hardware to measure in-cylinder pressure and crank angle position were purchased, 

designed, fabricated, and mounted onto the vehicle. The vehicle itself was mounted on a 

chassis dynamometer and run at set speeds and loads using compressed natural gas 

(CNG) and a 33 percent blend of hydrogen with compressed natural gas (HCNG). A data 

acquisition program was written in LabVIEW to record real-time cylinder pressures, 

while emissions data were simultaneously recorded using Sensors Inc.’s Semtech-DS 

emissions analyzer. Using a heat release calculation program written in Matlab, the 

combustion and emissions data were analyzed to determine combustion performance 

across all test points. 
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Chapter 2 
 

Literature Review and Background 

2.1 Outline 

To gain insight into how hydrogen affects natural gas combustion in an internal 

combustion engine, it is essential to have a clear understanding of the fuel structure and 

properties of methane and hydrogen, as well as of spark-ignition combustion principles, 

differences in kinetic interactions, and vehicle loading.  In this chapter, a description of 

the chemical structure and properties of methane and hydrogen is given, followed by an 

overview of the spark-ignited engine combustion process, combustion propagation 

mechanisms, and the quantitative ways in which combustion is measured. Finally, 

previous research on hydrogen’s effect on natural gas combustion in engines and vehicles 

is reviewed. 

 

2.2 Chemical Structure and Properties of Methane and Hydrogen Fuels 

 Natural gas is a light hydrocarbon composed of methane (CH4) and from 0 to 20 

percent of ethane (C2H6) and propane (C3H8). Nitrogen, helium, and carbon dioxide are 

also found in trace amounts. Natural gas has the highest ignition temperature of any 

commonly used hydrocarbon fuel, and is the slowest burning as well [6]. 

 While engine manufacturers have produced engines that run on compressed 

natural gas (CNG), a more recent development is conversion of engines to operate on a 

222



6 

 

hydrogen-natural gas blend fuel, which is commonly known as hydrogen enriched 

compressed natural gas, or HCNG. By displacing some natural gas with hydrogen, 

scientists and engineers have been attempting to improve combustion performance and 

extend the lean-burn limit of methane, by blending 1 to 30 volume percent hydrogen in 

natural gas. This process has generated enough interest that one company, Hythane 

Company LLC, has patented a 20 volume percent blend of hydrogen with natural gas 

labeled “Hythane”.  

 Hydrogen addition has been shown to increase thermal efficiency and reduce 

carbon monoxide and unburned hydrocarbons by increasing the combustion quality of 

natural gas [5]. Table 2-1 compares the fuel characteristics of hydrogen and methane: 

Because of hydrogen’s highly reactive nature, it burns faster and more completely than 

methane. While this property makes hydrogen a prime candidate for increasing overall 

efficiency and reducing emissions, hydrogen is also less dense. Its displacement of 

natural gas in the fuel reduces the in-cylinder energy content, reducing power in a 

Table 2-1: Hydrogen and Methane Fuel Properties [1] 

  

 Hydrogen (H2) Methane (CH4) 
Equivalence Ratio ignition lower limit 0.10 0.53 
Mass Lower Heating Value 119,930 50,020 
Density of gas at STP (kg/m3) 0.083764 0.65119 
Volumetric Lower heating Value at STP 
(kJ/m3) 10,046 32,573 
Stoichiometric Air/Fuel Ratio 34.20 17.19 
Volumetric Lower Heating Value in air at 
stoichiometric conditions (kJ/m3) 2913 3088 
Hydrogen to Carbon Ratio 0.00 0.25  
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volumetrically equivalent charge of natural gas. The very low volumetric energy density 

of hydrogen is one of hydrogen’s major drawbacks. 

2.2.1 Hydrogen Production 

 Hydrogen is a common element found in many naturally occurring substances, yet 

diatomic hydrogen (H2) is not found naturally on earth. Hydrocarbon fuels (CxHy) and 

water (H2O) are the primary sources for hydrogen production. Through a variety of 

energy intensive processes, primary energy sources such as coal, petroleum, and natural 

gas are refined into synthesis gas, as shown as in Eq. 2-1, to produce hydrogen. Another 

method used to produce pure hydrogen is to pass electric current through water to 

separate its hydrogen and oxygen atoms. Hydrogen offers an advantage over fossil fuels 

because there are multiple pathways for hydrogen production.  

 

 
Figure 2-1: Pathways to Hydrogen Production [7] 
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The most mature technology used to produce hydrogen is steam reforming of natural gas. 

Steam methane reforming (SMR) involves passing steam and natural gas over a nickel 

catalyst at temperatures above 500°C. The two reversible reactions responsible for 

hydrogen production are as follows. 

During the process, steam is added in excess of the stoichiometric requirement so that Eq. 

2.2 will shift right to form hydrogen and carbon dioxide [8]. The Pennsylvania State 

University uses a variant of this hydrogen-production strategy. This advanced steam 

methane reformer is the most cost-effective hydrogen producer for small-scale 

applications.  

A pressure swing absorption (PSA) unit purifies the resulting gas to 99.99 percent 

pure hydrogen, which is compressed and stored [9]. The purified hydrogen is then 

recombined with unrefined natural gas to produce HCNG. In comparison to the price of 

pure natural gas, the cost of 80/20 and 90/10 blends of natural gas and hydrogen is 8 

percent and 15 percent greater, respectively[10]. 

2.3 Fundamentals of Combustion in Spark-ignited Engines 

In order to better understand the role that hydrogen plays in combustion, it is 

necessary to review the fundamentals of combustion in spark-ignited engines. In general, 

the natural gas spark-ignited engine combustion process can be summarized as follows.  

224 3HCOOHCH +→+  -49 kcal/mol 2.1 

222 HCOOHCO +→+  +10 kcal/mol 2.2 
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At a suitable time during the intake stroke, gaseous fuel is introduced at a high 

pressure into the engine cylinder by the fuel injection system through small orifices. The 

fuel then mixes with throttled air coming in through the intake manifold. A few crank 

angle degrees of rotation before the piston reaches the top dead center (TDC) position, 

the air-fuel mixture ignites when the spark plug initiates combustion in the cylinder, 

causing the cylinder pressure and temperature to increase rapidly. As the piston moves 

further into the expansion stroke, the cylinder pressure and temperature begin to decrease. 

The combustion reactions are quenched as the cylinder temperature drops during the 

expansion stroke. Details of the spark-ignited engine combustion process are introduced 

in the following sections. 

2.3.1 Spark-Ignited Stoichiometric Combustion of Hydrocarbons 

  Combustion is a rapid chemical reaction between radicals that converts chemical 

energy in the fuel to thermal energy via oxidation [6]. Assuming that only major products 

are formed, hydrocarbon fuels combust following the basic formula under stoichiometric 

conditions. 

The stoichiometric air-fuel ratio can be found by taking the ratio of the mass of air to fuel 

using Eq. 2.4 with Eq. 2.3. 

22222 76.3
2

)76.3( aNOHyxCONOaHC yx ++→++  2.3 

fuel

air
stoich MW

MWaFA
1
76.4)/( =  2.4 
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When the mass of fuel and air is adjusted, the mixture can be considered fuel lean or fuel 

rich, and the change is indicated by the equivalence ratio. The equivalence ratio is the 

ratio between the stoichiometric air-fuel ratio and the actual air-fuel ratio. 

2.3.2 Flame Kernel Development 

 Before combustion can take place, a source of energy must first be introduced. In 

a spark-ignited engine, a spark plug initiates combustion, which develops the initial flame 

kernel. The energy input is enough to sustain a propagating flame, which in the first few 

crank angle degrees exhibits characteristics of a laminar flame. This smooth, spherical 

flame, which contains only minor irregularities, surrounds the spark plug gap.  

Because of the smooth shape of the flame, the flame kernel development is highly 

sensitive to variations in laminar flame speed and mixture composition. Reduction in the 

flame speed causes heat to be lost by conduction to the surroundings, which leads to 

cooler flame temperatures. With lower flame temperatures, the flame kernel development 

process approaches the point of extinction and increased formaldehyde formation [11]. 

   As the flame grows, it interacts with the turbulent flow field near the spark plug. 

Because of distinct, uncontrollable variations in the turbulence, the flame rarely 

propagates the same way in each cycle, causing cycle-to-cycle variation. Repetitive 

variation in the cylinder can lead to early flame quenching and reduced combustion 

performance. Once the flame kernel has developed into a turbulent flame, the most 

actual

stoich

FA
FA

)/(
)/(

=Φ  2.5 
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significant parameter controlling the remaining flame propagation is the turbulent-kinetic 

energy in the cylinder [12].  

2.3.3 Combustion Kinetics 

 Combustion is governed by radical intermediates when reacted with air. Radicals 

require high temperature to form. These temperatures are maintained during the reaction 

by heat produced by combustion. Radicals initiate a chain reaction, propagating the 

radical formation throughout the system. The first step in the combustion reaction is the 

chain-initiating step in which two stable molecules collide to form a stable molecule and 

two radicals. Next, chain propagating and branching steps involve the collision between a 

radical and stable molecules resulting in the formation of one or two radicals. 

Combustion is terminated when the radical pool is depleted by interactions of the radicals 

with the wall or through recombination. The next sections will explore the kinetics 

involved in methane and hydrogen combustion, to get an idea of why hydrogen benefits 

combustion on a molecular level. 

2.3.4 Methane Oxidation Kinetics 

 In HCNG combustion, the two primary types of oxidation reactions involve 

methane and hydrogen. This section will explore the theories behind the changes in 

oxidation process. 

 The first step in the combustion of methane and air is the cleavage of a carbon-

hydrogen bond, resulting in the creation of a hydrogen radical and a hydrocarbon radical. 
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The carbon-hydrogen bond in methane has approximately 40 kilojoules more energy than 

the same bond in long-chain hydrocarbons, leading to difficulty in methane-air ignition. 

More energy is required to break the first bond in the molecule, to initiate the reaction. 

The chain initiation reactions for combustion, shown below, are classified as either low-

temperature or high-temperature reactions [6].  

2.3.5 Hydrogen Oxidation Kinetics 

 In the hydrogen-oxygen reaction system, the dissociation energy of hydrogen is 

lower than that of oxygen. In hydrogen oxidation, early forming H radicals advance 

combustion in the early stages of the burn. The literature [6] suggests that the chain-

initiating step for hydrogen combustion, is the following:  

It is argued that because of its high energy requirement, 435 kJ/mol, hydrogen will react 

only at high temperatures during a collision with another molecule, as in Eq. 2.9.  

The pool of O, H, and OH radicals builds quickly through a series of chain reactions:  

2324 HOCHOCH +→+  (low temperature) 2.6 

MHCHMCH ++→+ 34 (high temperature) 2.7 

HHOOH +→+ 222 (low temperature) 2.8 

MHMH +→+ 22 (high temperature) 2.9 

OHOOH +→+ 2  2.10 

OHHHO +→+ 2  2.11 

OHOHOHO +→+ 2  2.12 
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These chain-branching reactions have very low activation energy, which advances 

combustion rapidly at lower temperatures. 

2.4 Measuring Combustion Performance 

 Combustion statistics can be computed from the in-cylinder pressure 

measurements. Such statistics are useful in comparing combustion performance 

regardless of engine size, conditions, or as in the subject of this study, fuel. 

Measured cylinder pressure in an internal combustion engine is a function of 

cylinder volume change, combustion, heat transfer to the cylinder walls, flow in and out 

of crevice regions, and flow past the piston rings. Pressure measurements are used to 

determine the approximate heat released in the cylinder during the four-stroke cycle. 

These data allow trends in the combustion process to be determined.  

This section will describe the approach used to analyze the cylinder pressure and 

its use in determining the speed at which combustion occurs in the cylinder. 

2.4.1 Mass Fraction Burned 

 Using pressure trace analysis to determine the fraction of the fuel burned in the 

cylinder as a function of crank angle allows for the characterization of the various stages 

of the combustion process and to compare rates of oxidation [11]. While a popular 

method to determine mass fraction burned is to use the Weibe function, it is also possible 

to approximate the fraction of fuel burned by using the normalized values of cumulative 

heat release. It must be taken into account that normalized heat release at stoichiometric 
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or rich conditions begins to deviate from the actual mass fraction burned, as shown in the 

modeled data in Figure 2-2.  

 Not all of the chemical energy of the burned fuel is released because of 

dissociation and limited oxygen availability, at high temperature and pressure conditions, 

resulting in the discrepancy shown above. The unconverted chemical energy is 

approximated by the enthalpy of CO and H2 within the cylinder. Chun et al. [13] state 

that in real-time pressure data, normalized heat release is a reasonable estimate of mass 

fraction burned because the dissociation level will be smaller due to the effects of heat 

transfer and crevice losses on peak temperature. For the purposes of this study, the 

normalized heat release determined by the heat release data will equal the percent mass 

fraction burned of the fuel. 

 

 
Figure 2-2: Normalized Heat Release and Mass fraction burned [13] 
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2.4.2 Ignition Delay 

In a combustion chamber, ignition delay is governed by the chemistry of the fuel, 

the geometry of the combustion chamber, the air-fuel ratio, and cycle-to-cycle variations 

of combustion. Engine geometry and spark plug position dictate the flame front surface 

area. The larger the area, the more fresh charge can enter and propagate the combustion 

reaction. Also known as flame development angle, ignition delay is the crank angle 

interval from spark discharge to when a significant amount of fuel chemical energy has 

released. This quantity is usually 10 percent of fuel mass fraction burned, but can also be 

taken as 1 or 5 percent [11].  

Heat release is computed using the derivative of pressure trace as a function of 

crank angle. Small oscillations in pressure data can cause significant errors in heat release 

analysis. These oscillations are exacerbated at low rates of heat release. To reduce the 

effect of noise, the crank angle interval from spark timing to 10 percent mass fraction 

burned is defined as the flame development angle as used in Swain et al. [4].  

2.4.3 Combustion Duration 

Combustion duration is the crank angle interval of during which the fuel burns in 

the cylinder. This measurement is the interval between 10 to 90 percent of the fuel mass 

fraction burned. From a thermodynamic standpoint, the highest efficiency is achieved if 

all of the chemical energy was released when the piston was at top dead center. However, 

achieving such a combustion rate is not only impractical, but also would cause irreparable 

damage to the engine. Manipulating engine conditions to decrease combustion duration is 
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advantageous because it reduces heat losses in the engine. Engine speed is a major factor 

in combustion duration: a four-fold increase in speed will increase the combustion 

duration by a factor of 1.6 at stoichiometric conditions [11]. 

2.5 Hydrogen Benefits to Combustion 

 In the following section, the benefits of hydrogen addition to combustion of 

natural gas are reviewed. Hydrogen fuel chemistry, composition, and properties lend 

itself to an increased efficiency, flame speed, and radical formation over those of 

methane during combustion. 

2.5.1 Increased Cycle Efficiency 

 The theoretical maximum of a constant volume cycle conversion of fuel energy to 

usable energy is called the ideal cycle efficiency and is calculated by Eq. 2.13.  

Ideal cycle efficiency is a function of compression ratio and specific heat ratio (). 

Specific heat ratio is a measurement of the degrees of freedom of a molecule—the more 

degrees of motion in the molecule, the larger the number of degrees of freedom. A 

diatomic molecule, like hydrogen (H2), will have a higher ratio of specific heats at the 

same temperature and pressure than a 5-atom molecule, like methane (CH4) [14]. 

Hydrogen at standard temperature and pressure has a ratio of specific heats of 1.4, while 

the ratio for methane is 1.3. The ideal cycle efficiency would be expected as more 

1,
11
−

−=
γ

η
c

CVi r
 2.13 

233



17 

 

hydrogen is added to the charge, based on Eq. 2.13. Efficiency of an internal combustion 

engine is shown in Figure 2-3 as a function of gamma and compression ratio. 

 One of the main sources of inefficiency in a spark-ignited engine is throttling of 

the intake airflow coming into the cylinder. Throttling results in less inducted air mass 

and an increased pressure drop as the air is drawn into the cylinder during the intake 

stroke. This reduces thermal efficiency because of a reduction in peak pressure attained 

during combustion. However, it has been shown [5] that a mixture of 20 percent 

hydrogen in natural gas when hydrogen blends are used, such pumping losses are reduced 

contributing to a higher thermal efficiency.  

2.5.2 Increased Flame Speed 

 Quicker burn time reduces heat transfer from the hot in-cylinder gases to the 

surroundings, resulting in efficiency gains. During the faster combustion that occurs with 

 

 
Figure 2-3: Ideal cycle efficiency as a function of gamma and compression ratio[15] 
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hydrogen and air, the thermal energy lost is only 17 to 25 percent of the total energy 

released. Methane air combustion loses 22 to 33 percent of its energy through the same 

convective heat transfer through the cylinder walls. The slower propagating flame speed 

of stoichiometric methane combustion in air is 40 cm/s while an identical hydrogen and 

air flame propagates at a rate between 265 and 325 cm/s [1]. Yu et al. [16] studied the 

effect of hydrogen addition to the flame speed of natural gas and found a linear 

correlation between the addition of hydrogen and the increase of the methane-hydrogen-

air flame speed.  

2.5.3 Rate-Limiting Factors 

 Because the process of combustion depends on the formation of radicals in order 

to accelerate flame propagation, a larger pool of radicals increases flame speed. However, 

some radical reactions have a slow reaction rate that governs the speed of combustion in 

the system. This reaction is known as the rate-limiting step because it controls how fast 

the overall reaction occurs. 

 It has been hypothesized by Collier et al. [17] that the rate-limiting step in the 

combustion of natural gas is: 

It is further hypothesized that once CH3 is formed, the remaining major reactions 

completing combustion to CO2 and H2O proceed rapidly. In contrast to methane 

combustion, hydrogen and air combustion produces hydroxyl radicals rapidly at low 

−+ +→+ OHCHOCH 34  2.14 
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temperatures. The formation of the hydroxyl radicals can help bypass the rate-limiting 

step by the reaction [17]: 

The addition of hydrogen to methane increases the number of hydroxyl radicals available 

to strip the first hydrogen atom from the methane molecule. Bypassing the rate-limiting 

step causes combustion to occur more rapidly.  

 This idea was investigated further by Priyadarshi [18] in his master’s thesis. By 

using computer modeling of the entire reaction system, he showed that methane 

combustion in 30 volume percent HCNG combustion is limited by Eq. 2.16: 

His findings confirm that the hydroxyl reaction with methane is a rapid reaction. This 

result suggests that a higher concentration of hydroxyl radicals increases the speed of 

combustion.  

 Detailed kinetic modeling in a jet stirred reactor was done by Dagaut et al. [19] 

using modeling software. The group modeled the kinetics involved in both natural gas–

oxygen combustion, and hydrogen-natural gas-oxygen combustion at an equivalence ratio 

of 0.3. Their study showed that in both cases, methane oxidation is completed via 

reaction with OH radicals 72 percent of the time. Concurrently, H and O radicals oxidize 

methane 14 and 10 percent of the time, respectively. With 1.75 percent volumetric 

addition of hydrogen, the percentage of methane oxidized by OH is unchanged. From 

this, it can be theorized that OH is the most important reactant in methane oxidation. 

OHCHOHCH 234 +→+ +−  2.15 

234 HCHHCH +→+ ++  2.16 
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 Modeling also showed hydrogen addition increases the importance of the reaction 

below.  

Increased activity of Eq. 2.17 [19] increases OH present in the system. The modeled 1.75 

percent addition of hydrogen increases the presence of OH radicals by 17 percent. 

Because of their earlier stated importance to methane combustion, the increased 

availability of these radicals increases flame propagation.  

2.5.4 Experimental Research on HCNG flames 

 H, O, and OH radicals are of extreme importance in propagating the combustion 

reaction. The increase in radical formation seen in modeling has also been observed 

experimentally. Schefer [20] characterized flame structure using OH planar laser-induced 

fluorescence. A comparison of natural gas flame and 20 percent hydrogen and natural gas 

flame on a burner produced the graph in Figure 2-4. The figure shows that increased 

hydrogen in the fuel increases the surface area of the OH radicals in the flame, allowing 

more air-fuel mixture to oxidize. The increase in OH concentration in the outer flame was 

20 percent. OH radicals reduced 20 percent in concentration in the inner flame. The 

increased radical availability increases the flame stability, allowing it to run at leaner 

conditions.  

 

OHOHHOH +→+ 2  2.17 
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2.5.5 Spark Timing Adjustments for Optimization 

 While HCNG mixtures offer an advantage of combustion over CNG, fuels cannot 

simply be interchanged to obtain optimal efficiency. Researchers have blamed poor 

performance of HCNG on their failure to reprogram fuel and spark timing maps designed 

to optimize natural gas utilization in the engine [21].  

 Nagalingam et al. [22] showed that faster-burning hydrogen produces optimum 

torque an average of 20 crank angle degrees before that of natural gas. They also reported 

retardation in optimal spark advance with HCNG due to faster combustion in a research 

engine running at 1200 rpm. At this point, peak engine power could no longer reach the 

same level as with natural gas alone. Later research by Collier et al. [23] showed that 

optimal spark timing reduces from 40 degrees before top dead center (BTDC) to 36 

 

 
Figure 2-5: OH Signal Intensity in Natural Gas and 20 Percent HCNG[20] 
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degrees BTDC when hydrogen is added to methane. Reduced combustion duration 

requires retarded ignition timing to optimize engine output. 

2.6 Emissions 

 Government-mandated emissions regulations are becoming increasingly stringent 

worldwide. Emissions levels of vehicles used on the road today already require high-cost, 

complex technology to maintain current emission regulations. To meet the stricter 

emissions regulations of the future, hydrogen addition is another option for vehicle 

manufacturers.  

Environmentally harmful emissions measured in this study were nitrogen oxide 

(NO), nitrogen dioxide (NO2), and carbon monoxide (CO). By changing the fuel 

composition in the cylinder, some pathways of formation will increase, while others 

decrease. This section explores how these emissions are formed.  

2.6.1 Oxides of Nitrogen 

 The principal source of nitrogen in nitrogenous oxides (NO, NO2) is air. It is 

generally accepted in the scientific community that for stoichiometric air-fuel mixtures, 

the Zeldovich mechanism governs the production of nitrogen oxide. NO is formed in the 

flame and postflame gases. The engine compression stroke compresses the burned gases 

released during the early stages of combustion, increasing their temperature. This 

temperature increase drives the mechanism to form more NO.  
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 NO2 is produced in much smaller quantities than NO during normal combustion. 

It is formed when NO reacts with a hydroperoxyl radical to form a hydroxyl radical and 

NO2. More prevalent in light-load diesel combustion, NO2 is formed when it mixes with 

cooler fluid, preventing the conversion of NO2 to NO. In a spark-ignition engine, NO2 is 

highest in concentration in a slightly fuel-rich mixture. [11] 

2.6.2 CO Formation 

 Carbon monoxide (CO) emissions are a result of incomplete oxidation. The 

amount of CO emitted increases with a reduction of excess fuel. CO formation can be 

summarized by the following reaction [11], in which the R group is the rest of the 

hydrocarbon. 

The CO is then converted into CO2 through the slower reaction of CO and an OH radical.  

It is generally accepted that at peak cylinder temperature, the carbon-oxygen-hydrogen 

system is equilibrated. As the combustion gases cool, the temperature and pressure 

gradients within the gas cause uneven CO oxidation, resulting in CO emissions [11]. 

2.6.3 Unburned Hydrocarbons 

 Hydrocarbon emissions are the consequence of the incomplete combustion of 

hydrocarbon fuel. While methane in the exhaust is not a regulated hydrocarbon because 

CORCORCHORORRH →→→→→ 2  2.18 

HCOOHCO +→+ 2  2.19 
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of its inert characteristics, pyrolysis and synthesis of methane that occurs during 

combustion forms other harmful gasses. The resulting oxygenates, carbonyls, and 

aldehydes contribute to pollution. Unburned hydrocarbons are formed when they are not 

exposed to the flame front to allow the oxidation reaction to occur. They can be found in 

crevices on the surface of the cylinder or blow by piston rings, only to reappear in the 

cylinder after combustion has completed [11]. 

2.7 HCNG in Test Cell Engines 

 This study is an attempt to bridge the gap between HCNG test cell research and 

vehicle testing by determining what happens inside the cylinder during vehicle driving 

conditions. This section will detail the results researchers obtained using constant speed 

and load testing on an engine test stand. The following section will review issues related 

to real driving conditions and look at hydrogen-natural gas testing in the literature. The 

results will explore correlations between the two. 

2.7.1 Part Load Condition HCNG 

 Spark-ignited engines require a constantly adjusted amount of fuel, proportional 

to the energy required by the engine to produce the required power output. The throttle 

valve restricts air coming through the intake to maintain the correct stoichiometry of the 

air-fuel mixture. Light-load conditions are plagued by incomplete combustion, which 

decreases thermal efficiency and increases emissions. These conditions compose a large 

portion of the Federal Driving Cycle [4], which is representative of normal vehicle 
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operation. Therefore, it is of utmost importance for the vehicle to perform effectively at 

these conditions.  

 Engines running at low speed and loads have been found to have slower flame 

speeds than those running at wide-open throttle. Light-load conditions result in an 

increased burn time in the cylinder because of lower turbulence. But the slower 

combustion speed is also a result of a higher concentration of residuals remaining in the 

cylinder. Such conditions increase the severity of flame initiation and propagation 

problems.  

 In order to investigate the relationship between load and burn time, low road loads 

were tested, by Cattelan et al. [5],who evaluated the brake-specific energy consumption 

(BSEC) as a function of engine load for Hythane and natural gas. At low loads of 5 and 

30 N-m, benefit from the addition of hydrogen was indicated by a decrease in specific 

energy consumption (BSEC). However, at loads greater than 30 N-m, the difference in 

BSEC became negligible.  

 Testing was done on a closed-loop, three-way catalyst engine that controlled the 

equivalence ratio to 1.0 by Swain et al. [4]. At an equivalence ratio of 1.0, there was only 

a rise in NO formation from 4.5 to 5.5 g/hp-hr. The smaller increase is BSNOx was 

attributed to the 4 percent to 5 percent increase in thermal efficiency. Higher loads 

attenuated thermal efficiency gains when less exhaust gas remained in the cylinder. A 

reduction in BSCO and BSHC was also observed at low load stoichiometric conditions.   
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2.7.2 Swirl Addition to HCNG 

 Swirl is an effective technique to increase mixing of the air-fuel mixture which 

improves combustion performance. At wide-open throttle conditions, throttling losses are 

reduced. Other important factors like in-cylinder flow velocity become a more important 

factor in combustion progress. Using a natural gas engine with hydrogen blends of 0 to 

20 percent, Andersson [15] analyzed the difference in combustion between different 

induced flow velocities. Using the more turbulence inducing quartette head, he found 

there was no benefit from hydrogen addition. 

 Stoichiometric combustion of natural gas with hydrogen addition in a high swirl 

case showed no reduction in ignition delay. At the same conditions with high turbulence, 

combustion duration did not reduce with addition of hydrogen. The author concluded that 

during periods of high turbulence the other engine conditions could assist combustion, 

negating benefits of hydrogen addition. 

2.7.3 Hydrogen-Natural Gas Studies 

 Using cylinder pressure data, Swain et al. [4] tested methane and Hythane burn 

durations at lean conditions using computer modeling. Two graphs from their results 

show distinctly different trends. While the testing is only done only for equivalence ratios 

from 0.65 to 0.80, extrapolated data project the effects of hydrogen at stoichiometric 

conditions. At stoichiometric conditions, the measure of combustion duration in crank 

angle degrees converges, indicating that hydrogen has no benefit on stoichiometric 

methane combustion at 1000 rpm, 1 bar BMEP. However, HCNG and CNG show linear, 
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parallel trends in flame development angle over the measured equivalence ratios. This 

indicates that at an equivalence ratio of 1.0, hydrogen reduces the flame development 

angle. 

Karim et al. [24] increased the amount of hydrogen in natural gas and 

subsequently derived relevant combustion statistics for a variety of equivalence ratios. 

Hydrogen increased the peak pressure in each cylinder 1 bar for every 10 percent volume 

hydrogen added. By increasing the concentration of hydrogen in the fuel mixture, a 

reduction in the length of ignition delay and combustion duration was observed. These 

results reflect the speeding up of both flame initiation and propagation rates.  

2.7.4 Emissions Testing 

 The latter part of the study will compare emissions data from stationary engine 

testing and vehicle testing. 

 Stationary engine testing with producer gas addition, a 33 percent blend of 

hydrogen with inert gases, was performed by Jensen et al. [25].  Their research explored 

the change in combustion performance when producer gas was added to natural gas. A 

statistically significant drop in unburned hydrocarbons was detected. It was determined 

that combustion enhancement is caused by post oxidation, which is less sensitive to 

cyclic variations. The lower level of unburned hydrocarbons suggests a more complete 

combustion, which can be attributed to the faster burning rate of hydrogen. In this 

instance, hydrogen seems to be a dominating factor in the consumption of hydrocarbons, 

despite the addition of inert gases as the remaining components in the producer gas like 
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CO2, and N2, which retard flame propagation. The reduction in unburned hydrocarbons 

suggests a more complete combustion of the fuel in the cylinder. 

 NO emissions increase when hydrogen is added to the natural gas mixture at the 

same operating air-fuel ratio because hydrogen drives the flame temperature higher. 

Collier at al. [23] studied the untreated emissions leaving the HCNG engine. NO 

emissions increased 5 percent at stoichiometric conditions. However when ignition 

timing was retarded in a lean burn engine with 70:30 HCNG mixture, NOx emissions 

were controlled to low levels over a range of speed and loads. The spark timing maps on 

the ECU were installed by Collier technologies that retard spark timing in efforts to 

reduce NO production from the hotter burning HCNG. More information regarding 

emissions data across hydrogen-natural gas blends in engine combustion can be found in 

Akansu’s work [10]. 

2.8 Hydrogen Addition in On-Road Performance 

It is impossible for engine manufacturers to predict all the conditions an engine 

will experience during its lifetime and so engine settings are based on testing done on 

isolated engine test stands. In these tests, the electronic control unit (ECU) controls 

engine parameters such as spark ignition, air intake, and fuel injection using data such as 

temperatures and exhaust composition to optimize engine performance. However, with 

varying external conditions that occur when the vehicle is on the road, engine loads will 

fluctuate unpredictably, and the engine can experience in-cylinder combustion variations 

from cycle to cycle that reduce indicated thermal efficiency. In this final section, issues 
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related to vehicle performance are reviewed. Next, the background of pressure sensors is 

explored followed by fundamentals of engine loading. 

2.8.1 Vehicle Operating Conditions 

 Current government standards require engine and vehicle manufacturers to meet 

specific requirements, which have become more stringent over time. Catalytic converters 

were first used in commercial gasoline vehicles in 1975 as a way to help meet the 

mandated emissions requirements. Three different reactions take place in the standard 

catalytic converter. Two are the oxidation reactions in which unburned hydrocarbons and 

carbon monoxide are converted to carbon dioxide. A third reaction reduces NO using a 

platinum-based catalyst to reduce NO to N2 and O2. 

 To catalytically convert these emissions effectively, three-way catalytic 

converters require that the engine run at stoichiometric conditions. If the fuel mixture is 

too lean, the oxidation reactions are favored; if it is too rich, the reduction reactions are 

favored. These results have been shown by Pede et al. [26] in testing on a lean burn 

HCNG vehicle running the New European Drive Cycle (NEDC). They found that lean 

operating conditions resulted in higher concentrations of harmful exhaust emissions such 

as NOx, CO, and UHC’s than would be expected under stoichiometric conditions. The 

different mole fractions inhibit the formation of N2 and CO2 in the catalytic converters, 

minimizing the effect of the lean burn.  
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2.8.2 Pressure Sensors in Vehicles 

 While there are few published studies studying heat release through pressure 

sensors on an actual vehicle, pressure signals do provide important information that can 

be processed to optimize thermal conversion efficiency. Detection of knock and 

combustion conditions from the pressure data allows the ECU to finely tune individual 

cylinder parameters. 

 A majority of engines on production vehicles are closed loop systems that 

determine the amount of fuel and air required in the cylinder to produce the appropriate 

amount of power at the smallest cost to fuel economy and emissions. In the closed loop 

system, temperature and exhaust information is fed back via the oxygen sensor and 

thermocouples, and the ECU uses a pre-determined engine map to determine appropriate 

engine settings. However, exhaust temperature and oxygen content are inaccurate 

measures of combustion performance. Cylinder pressure sensors give the ECU a better 

picture of the quality of combustion inside the cylinder. Because the cost of pressure 

sensors can run into the thousands of dollars, resulting benefits in combustion 

performance do not justify their use in mass produced vehicles as yet.  

 Over the past 20 years, in-cylinder pressure sensors have dramatically reduced in 

cost. To further improve performance and efficiency,  engineers have looked at ways to 

use data for real-time cylinder pressure. Rather than determining combustion 

performance through sensors external to the combustion process, engineers can look at 

the signature of combustion through the pressure trace. Using in-cylinder pressure 

measurements as a feedback sensor, in the place of an oxygen sensor, to control the 

amount of EGR and the air-fuel ratio is the latest in numerous attempts of engine control 
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[27]. With the development of more accurate combustion prediction, increased fuel 

economy and decreased emissions have been achieved. For instance, it is possible to 

operate the engine at minimum spark advance in order to create conditions for maximum 

brake torque (MBT), thereby compensating for burn rate and spark requirement 

differences between cylinders. Cylinder-pressure based control can be adapted for 

environmental factors, manufacturing variations, component wear, and degradation of 

various types. 

 Having a pressure sensor located in the cylinder of a vehicle has been shown to 

allow a variety of improvements in the vehicle’s combustion performance. In the mid-

1970s, Hubbard et al. [28] were able to achieve brake-mean effective pressure and fuel 

economy within 0.1 percent of the theoretical optimum. The pressure sensor in the 

cylinder enabled the ECU to better understand the combustion in the cylinder.  The 

current study will produce high quality combustion analysis using pressure sensor data. 

2.8.3 Vehicle Loads 

 Propelling a vehicle forward requires the engine to provide energy to the wheels 

overcoming the load applied from the vehicle surroundings. The instantaneous motion 

resistance power (Pv) that a vehicle has to overcome to travel at a given speed is a 

function of speed (v), rolling resistance (Rr), grade resistance (Rg), aerodynamic 

resistance (Ra) and inertial forces in the vehicle (mma). It can be modeled using the 

following equation [29]: 

)( maRRRvP magrv γ+++=  2.20 
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Other factors that reduce the power available from the engine are accessories loads (Pac) 

such as air conditioning or interior lighting. Transmission efficiency (tr) is the energy 

that will be lost through the transmission. The power equation then becomes [29]: 

 The vehicle powertrain transfers power from the crankshaft in the engine to the 

wheels. This system includes the transmission, driveshaft, differential, and the final drive. 

Losses that occur among these interlocking elements are due to vibration, friction, and 

rotation.  

2.8.4 HCNG Vehicle Literature 

In order to verify that the engine tests performed in a lab applied to actual testing 

conditions, Pede et al. [26] tested a 3500 kg truck powered by a 2.8L natural gas engine. 

Fuel economy and emissions that occurred using HCNG blends of 0, 10, and 15 percent 

were compared. Primary studies were done on stoichiometric combustion in efforts to 

reduce tailpipe NOx emissions.  

It was found that at the same conditions, retarding the spark timing reduced the 

levels of NOx dramatically without significantly reducing the output of the engine. In all 

stoichiometric test cases, the HCNG blends showed reductions in tailpipe hydrocarbons, 

NOx, and CO2, when compared to natural gas. The amount of CO emissions decreased 

with 10 percent hydrogen added, yet increased with 15 percent added. There was a 

positive linear correlation between fuel economy and quantity of hydrogen. Indicated 

)()( maRRRPP magractr γη +++=−  2.21 
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thermal efficiency followed a positive linear correlation with hydrogen addition and 

increased 5 percent with the 15 percent HCNG blend.  

Don Karner et al. [21] studied a Dodge Ram Wagon to evaluate fuel and 

emissions with CNG and HCNG fueling during actual and simulated driving conditions. 

While in service running on compressed natural gas, the vehicle fuel economy was 13.2 

miles-per-gas gallon equivalent (gge). When running on a 15 percent HCNG blend, the 

same vehicle ran at a more efficient fuel economy of 14.7 miles per gge. When the 

vehicle was run on the FTP-75 road test, reductions in unburned hydrocarbons, carbon 

monoxide, and carbon dioxide were seen. A 90 percent increase in NOx was attributed to 

the fact that the engine was not tuned to optimize HCNG conditions. 

While the current study does not focus on emissions, the decrease in fuel 

economy and increase in NOx emissions should not be as severe because the ECU has 

been reprogrammed to optimize for HCNG combustion. 
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Chapter 3 
 

Experimental Set-up 

3.1 Outline 

 The following section begins with an explanation of the engine modification and 

set-up required for this study. Next, hardware modifications required for this study and 

the testing procedure are explained. Then the data acquisition system and data analysis 

methods are discussed. Finally, the engine testing plan is introduced. 

3.2 Test Engine and Fueling 

 In 2004, the Pennsylvania State University purchased a number of fleet vehicles 

to provide mobility for employees at the Office of the Physical Plant. As part of an 

initiative to use alternative fuels, Penn State’s order included a number of natural gas 

vans. The vehicle involved in this study is one of those compressed natural gas (CNG) 

dedicated vehicles, a 2004 Ford E-Series E-250 Van. The stock vehicle meets the van 

wagon SULEVII emissions standards. Its fuel economy is 18.5 miles per gas gallon 

equivalent (gge), and it has a range of 280 mi, based on a slow fueling of the tank to 3600 

psi [30]. Detailed engine specifications are listed in Table 3-1.  
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Air Products and Chemicals, Inc. installed a hydrogen fueling station on campus 

in December of 2005 that dispenses neat hydrogen and HCNG. Together with Collier 

Technologies, the Pennsylvania State University has developed hydrogen-blend HCNG 

vehicles on campus to use this station. In these vehicles, Collier Technologies 

reprogrammed the fuel and spark maps to optimize burning of HCNG, and, to increase 

power output in the engine, added an Eaton M90 supercharger. A Dynetek carbon fiber 

reinforced aluminum tank replaced the stock stainless steel fuel tank which is susceptible 

to hydrogen embrittlement. To allow for switching fuels, interchangeable CNG and 

HCNG nozzles have been mounted to the fuel port on the side of the vehicle. Fueling is 

done just like a typical gasoline or diesel pump.  

Table 3-2: Test Engine Specifications 
 

Engine SOHC 5.4-Liter, V8, 
Natural Gas Engine 

Displacement 5.4 L 
Bore 90 mm 

Stroke 106 mm 
Compression Ratio 11.0 

Connecting Rod Length 169.1 mm 
Rated Power 194 kW @ 4500 rpm 
Peak Torque 474 Nm @ 2500 rpm 

Injection System 
Electronically 
controlled common-rail 
injection system 

Valve Train 2 valves/cylinder  
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3.3 Engine Instrumentation and Data Acquisition System 

While running the vehicle, data were collected on a Dell Dimension desktop 

computer with a National Instruments PCI-MIO-16E-4 data acquisition card, which has a 

333 kilo-samples per second maximum sampling rate. The board reads three signals: a 

pulse signal every 0.1 crank-angle degree, a pulse signal every 360 crank-angle degrees 

from the crank angle encoder, and a voltage signal returned from the transducer. The 

three signals were processed through a data acquisition program written in LabVIEW 7.1 

and recorded to a data file. 

The piston position and speed were measured using a Model 725 Accu-Coder 

optical shaft encoder. Every 0.1 change in crank angle degree, a pulse signal was sent to 

the computer and a cylinder pressure value was recorded. The crank angle encoder was 

connected to the crankshaft pulley by a custom-made mounting bracket. A grooved 

aluminum adaptor was bolted inside the crankshaft pulley and attached to a belt that 

drove the crank angle encoder. Figure 3-1 shows the crank angle encoder set-up mounted 

on the engine.  

A second signal referenced the position of the piston by sending a pulse every 

360-degree rotation. Top dead center was determined by using an indicator suspended 

above the cylinder. This point was confirmed by marking 20 degrees before and after top 

dead center on the crankshaft adapter at the halfway point. This position was marked on 

the crankshaft adapter using a scribe. The referencing signal was set to pulse when the 

piston reached this mark. 
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Pressure signal measurements were performed using a Kistler Type 6117BCD27 

measurement spark plug with an integrated pressure transducer. The working spark plug 

was removed from cylinder 7 and the Kistler spark plug was inserted in its place. The 

crystal in the transducer creates an electric charge in picocoulombs as a function of in-

cylinder pressure. This charge is passed through a Kistler 5010B charge amplifier, which 

generates a proportional voltage. The voltage value is recorded using the data acquisition 

system. Set-up of the pressure transducer system is shown in Figure 3-2. 

 

 
Figure 3-1: Crankshaft Pulley Adapter to Crank Angle Encoder 

Crankshaft pulley adapter 

Crank Angle Encoder 

Mounted Adapter 

Drive Belt  
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In order to obtain steady-state engine conditions, the van was operated on a 

Clayton Industries model VVT chassis dynamometer, which absorbs energy through 

large rollers on either side of the rear wheels. These rollers are vehicle-speed limited, and 

load is controlled by the operator. Testing procedures were set by a test matrix to 

determine combustion performance at controlled speed and load conditions. Standard 

driving cycles such as the Federal Transit Protocol (FTP) cycle, etc., were not followed 

since during such transient test cycles variable pressure conditions occur during 

combustion preventing steady-state combustion analysis. Instead, stead speed and load 

conditions were used as the basis for the test procedure. Once the vehicle reaches the pre-

 

 
Figure 3-2: Pressure Transducer Set-Up 
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set speed, a driver applied the throttle further with his or her foot to maintain the road 

load setting. Load conditions are specified in the test matrix.  

During testing, engine settings were recorded from the ECU using a scan tool. A 

series of cables were attached to a laptop running Ford Integrated Diagnostic System 

(IDS) software, which allowed the user to select individual parameters to read from the 

engine. Real-time intake air flow and temperature, throttle position, and spark advance 

were recorded during the test period. 

3.4 Fuel Analysis 

A gas chromatograph (GC) was used to determine the composition of the two test 

fuels [31]. Because the gas used in the vehicle could not be sampled readily from the 

vehicles fuel tank or during the fueling procedure, natural gas was sampled over multiple 

days and the data averaged to determine the average compositions of the natural gas and 

the hydrogen-natural gas mixture.  

The procedure used to determine fuel composition was as follows: Gaseous fuel 

was collected in a gas sample bag.  A 50-microliter fuel sample was extracted with a 

syringe, and injected into the GC.  The sample port volume was 1mL, made up of the 50 

microliter sample along with 950 microliters of argon (carrier gas). This procedure was 

executed twice, once for the flame ionization detector (for low molecular weight 

hydrocarbons), and then for the thermal conductivity detector (for hydrogen and 

nitrogen). 
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The gas chromatograph was calibrated for methane, ethylene, ethane, propylene, 

propane, butylene, butane, and hydrogen, for the ranges typically found in natural gas. 

The chromatogram provided the mole fraction of each constituent.  That mole fraction 

was then multiplied by 20 to bring the mole fractions up to the 1-microliter basis.   

3.5 Semtech-DS Emissions Equipment 

Emissions data from the test vehicle were collected externally using a Semtech-

DS, which is an onboard emissions testing system produced by Sensors, Inc., Saline, 

Michigan. The Semtech-DS uses a combination of methods, including Flame Ionization 

Detection (FID) with Non-Dispersive Infrared (NDIR) and Non-Dispersive Ultraviolet 

(NDUV). These methods allow for direct comparisons in test cell measurements for 

THC, CO, CO2, NO, and NO2 in compliance with CFR-40, 1065 Subpart J. A distinct 

advantage of this technology is its ability to absorb high shock or vibration, while 

providing accuracy, and resolution in a short response time. In these tests, the FID was 

not operational and no hydrocarbon data were recorded.  

The following system was used to obtain exhaust gas for analysis: Immediately 

after exiting the exhaust manifold, a portion of the exhaust gases passed through a one-

quarter-inch hole drilled into the exhaust pipe. A Swagelok weld fitting was attached to 

the exhaust pipe through which the exhaust sample flowed into a foot-long steel tube 

designed to protect the heated lines of the emissions analyzer. Exhaust gas continued 

through to a 190 °C heated line into the Semtech-DS to be analyzed.  
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Using an exhaust flowmeter linked to the vehicle’s on-board computer, the user 

could instantaneously measure emissions data as a function of engine performance in 

g/km, g/kg fuel, or g/bhp-hr. In addition, the testing block had communications and 

global positioning system modules. Data could be provided over cellular or Internet links 

in addition to on-board collection and storage. Since the vehicle was operated on a 

chassis dynamometer rather than over the road, this communications technology was not 

utilized. 

The CO, CO2, O2, NO, and NO2 concentrations were recorded on both a wet and 

dry sample basis. For the purposes of this report, they are reported on a dry sample basis. 

Table 3-3 is a summary of the measurement techniques used by the Semtech-DS.  

3.6 Testing Procedure 

The testing took place on the chassis dynamometer located adjacent to the 

Pennsylvania Transportation Institute at University Park, Pennsylvania. The pressure 

sensor and crank angle encoder were installed and connected to the data acquisition 

system. Exhaust gas recirculation (EGR) was prevented from entering the intake by 

disconnecting the EGR control valve connected to the throttle. Finally, it was verified 

Table 3-3: Summary of Exhaust Species and Measuring Techniques 

Measure Gaseous Species (units) Measurement Technique 
CO (volume percent) NDIR 

CO2 (ppm) NDIR 
O2 (volume percent) Paramagnetic detector 

NO (ppm) NDUV resonant absorption spectroscopy 
NO2 (ppm) NDUV resonant absorption spectroscopy  
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that the referencing signal from the crank angle encoder was being sent when the piston 

reached top dead center. The vehicle was prepared to run once the instruments needed to 

run the experiment and record data were set up. 

 The engine was then turned on and warmed up until the coolant temperature held 

a constant reading on the dashboard. Because there was no passive cooling of the engine, 

a large fan drew fresh air into the laboratory from outside the building. To run the test, 

the driver applied the throttle to bring the vehicle to the chassis dynamometer limited 

vehicle speeds of 15 or 30 miles per hour. The driver would then increase throttle 

position to maintain a road load of 10, 20, or 30 horsepower.  At each road load setting, 

an averaged 200 cycle pressure trace was saved to a file using LabVIEW. Updated scan 

tool data were read by the emissions system and saved to a separate file.  

3.7 Heat Release Analysis 

To investigate the effect of hydrogen on natural gas combustion, apparent heat-

release rate calculations for both fuels were performed. Heat release rate data allow for 

comparison of combustion performance for the two fuels. In this study a zero-

dimensional single zone model for the apparent heat release rate calculation [11] was 

used. This model is based on the following assumptions. First, the mixture is distributed 

homogeneously and has uniform properties throughout the cylinder. Second, the 

calculated ratio of specific heats of the in-cylinder gas mixture is assumed to be the same 

as that of air. Finally, the heat release due to combustion is considered to be heat addition 

to the cylinder. 
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The apparent heat release rate was calculated based on the cylinder pressure data 

using the first law of thermodynamics as described by Heywood [11]. The in-cylinder 

pressure changes as a result of cylinder volume, combustion, heat transfer effects, flow 

into crevices, and leakage. The most significant contributors to pressure increase are 

volume change and combustion.  

Heywood defines the chemical heat release rate, or gross heat release rate as 

shown in Eq. 3.1. Literally, the gross heat release rate is the “chemical energy” of the fuel 

that is released by combustion.    

The apparent heat release rate, also known as the net heat release rate, is the 

chemical heat release rate minus the losses incurred by heat transfer to the walls and 

crevice volume losses, as shown in Eq. 3.2. Because proper instrumentation to determine 

blow-by and crevice volume was restricted due to space considerations, the model used 

assumed heat transfer and crevice effects to be zero.  

 Net work and sensible energy of the charge determine the apparent heat release 

rate in Eq. 3.3. The equation for net heat release that includes measured variables is 

shown in Eq. 3.4. Differentiating the ideal gas law gives Eq. 3.5.  

iihtsch dmhWQdUQ +∂+∂+=∂  3.1 
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dQ sn +=  3.3 
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Substituting the ideal gas law into Eq. 3.4 gives Eq. 3.6. 

The value for the Cv/R term is found using the ratio of specific heats as is found in 

Heywood as Eq. 3.7, and will give Eq. 3.8 when substituted into Eq. 3.6. 

 The ratio of specific heats for the mixture is calculated using the equations below. 

For bulk cylinder temperatures less than 1000 degrees Kelvin, Eq. 3.9 is used. For 

temperatures greater than 1000 degrees Kelvin, Eq. 3.10 is used [32].  

Calculation of the bulk cylinder temperature was performed using Eq. 3.11, 

rearranged and with respect to crank angle position. The integral in Eq. 3.12 gives the 

bulk cylinder temperature.  

In order for heat release calculations to be accurate, pressure data must meet four 

criteria: First, the correct reference pressure must be used to convert pressure signals to 

absolute pressures. Second, the pressure versus crank angle degree phasing is accurate to 
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within 0.2 crank angle degrees. Third, clearance volume is estimated with sufficient 

accuracy. And finally, transducer temperature variations due to wall heat flux are held to 

a minimum. 

Pressure measurements were averaged over 200 cycles with 0.1 crank angle 

degree resolution. Figure 3-3 is a 200-cycle average pressure trace of natural gas 

combustion at a high speed and load. 

 In order to perform the heat release rate calculations, two derivative terms are 

needed, dV/d and dP/d. The derivative of volume can be calculated using the first order 

central difference scheme shown in Eq. 3.13. Any noise in the pressure signal can be 

detrimental to the heat release calculations. This is because the heat release is a derivative 

of the pressure trace, and any noise will be magnified. To reduce this problem, a fourth 
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order central finite difference is used to calculate the derivative of pressure, as shown in 

Eq. 3.14. 

An example of an instantaneous heat release graph is given in Figure 3-4.  

 

The cumulative heat release is calculated by integrating the apparent heat release 

rate, as shown in Eq. 3.15. To determine the mass fraction burned, heat release is 

converted into a percentage relative to maximum cumulative heat release. For each crank 

angle degree after the start of combustion, the percentage of maximum cumulative heat 

release is calculated using Eq. 3.16. For the purposes of this study, the percentage of heat 

released is equal to the percentage of mass fraction burned. 
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3.8 Calculating Air-Fuel Ratio 

Heat release calculations require accurate determination of the mass of air and 

fuel inside the instrumented cylinder. The mass of air in the cylinder is calculated using 

the air flow rate entering the intake mainfold. Mass of fuel is calculated using the air-fuel 

ratio determined by emissions data.  

 The method used to determine air-fuel ratio comes from work by Spindt [33]. In 

the Spindt method, the air-fuel ratio can be determined from the ratios of the wet exhaust 

components CO2, CO, O2, and unburned hydrocarbons. Because unburned hydrocarbon 

values were not recorded due to the inoperable FID, they were assumed to be equivalent 

to the baseline test in Cattelan et al. [5]. The fraction of hydrogen and carbon in the fuel 

are found using Eq. 3.17 and Eq. 3.18 based on the CxHy composition of the fuel. 

Ratios of the exhaust products are determined from the mole fractions of O2, CO2, CO 

and HC in Eq. 3.19, Eq. 3.20 and Eq. 3.21. 
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 These relationships are used in Eq. 3.22 to determine the approximate air-fuel 

ratio of the intake charge.  

3.9 Test Plan 

The objective of this study was to determine the effects of hydrogen on natural 

gas combustion under a variety of test conditions in order to determine how hydrogen 

benefits the efficiency of natural gas combustion in vehicles.  

Fuels used in this study were compressed natural gas (CNG) and a 33 percent 

hydrogen-compressed natural gas (HCNG) blend, with hydrogen representing 9 percent 

of the energy of the fuel in the HCNG. The natural gas source was the same for each test, 

and the hydrogen was generated by the Air Products and Chemicals, Inc. fueling station 

via steam reforming of methane, which was then blended with natural gas. Detailed fuel 

composition information can be found in Appendix A. 

Hydrogen was expected to increase combustion performance at low-speed and 

load conditions. Each fuel was tested at identical vehicle conditions. Normal operation 

was tested with the transmission in the “D” position. To evaluate fuel changes at high 
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engine speeds, the automatic transmission was placed in position D1. Table 3-4 details 

the test conditions used in investigating the effect of hydrogen on combustion during 

various driving conditions. 

Table 3-4: Test Matrix 

Fuel: CNG    
Road Load (horsepower) 10 20 30 
Transmission Position D/D1 
Vehicle Speed (miles/hour) 15/30 
    
Fuel: HCNG    
Road Load (horsepower) 10 20 30 
Transmission Position D/D1 
Vehicle Speed (miles/hour) 15/30  
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Chapter 4 
 

Results and Discussion 

4.1 Introduction 

This chapter is divided into five parts. In the first section, the calculations and 

data read from the vehicle are evaluated. The second section reviews the measures of 

combustion performance, including ignition delay, combustion duration, and coefficient 

of variance, as a function of fuel. In the third part, the effect of engine speed and vehicle 

load on combustion for both fuels is investigated. Next, emissions performance with 

hydrogen addition to natural gas is investigated. Finally, how the combustion 

performance in the cylinder changes as a function of vehicle speed is reviewed. 

4.2 Engine and Fuel Conditions 

 In this section, the fuel and engine conditions necessary for analyzing engine 

performance were recorded and calculated. The air-fuel ratio was calculated using 

emissions data. Because of the lack of instrumentation on the vehicle, the air-fuel ratio 

had to be calculated using raw exhaust data. Spark timing was determined by the 

electronic control unit, which controls the beginning of combustion in the spark-ignited 

engine. 
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4.2.1 Air-Fuel Ratio 

The air-fuel ratios for HCNG, which were calculated using the Spindt method, 

appear in Figure 4-1. The same method was used to calculate CNG air-fuel ratios, which 

are given in Figure 4-2. Because equipment limitations did not provide all variables 

required to compute air-fuel ratio, stoichiometric hydrocarbon results from Cattelan et al. 

[5] were used. The error bars on the graph were the result of the 95 percent confidence 

interval of CO on the air-fuel ratio calculation. 

The average HCNG air-fuel ratio calculated using the Spindt method is 18.29. 

Air-fuel ratio values for CNG combustion averaged 17.38. Using the methane and 

hydrogen components measured in the gas chromatograph, stoichiometric HCNG and 

CNG combustion with air have air-fuel ratios of 18.10 and 17.18, respectively. These 

values are close to those in Figure 4-1 and Figure 4-2, where air-fuel ratios recorded 
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fluctuations of less than 1 percent. For the purposes of this study, it can be assumed that 

engine control is fine-tuned to stoichiometric conditions.   

 

4.2.2 Spark Advance 

Spark-ignited engines use an electrically generated charge to begin the 

combustion process in the cylinder. In the vehicle used in this research, spark timing 

maps optimized performance by controling the engine to “learn” the most efficienct 

HCNG spark timing. These map data points were read off of the scan tool during the 

testing, at vehicle speeds of 15 miles per hour and 30 miles per hour. The average values 

for spark advance timings using CNG and HCNG are found in Table 4-1. While there 
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was some variation in spark advance at the same speed and load, this was probably a 

result of the highly sensitive nature of the throttle which was difficult to control. This 

data shows that spark advance is a function of throttle position and unaffected by fuel 

composition. 

Table 4-1: Spark Advance Timings 

Vehicle Speed: 15 MPH   

Transmission Position D (low speed) CNG Spark 
Advance (BTDC) 

HCNG Spark 
Advance (BTDC) 

10 hp 23 23.5 
20 hp 22.5 22.5 
30 hp 22 22 

Transmission Position D1 (high speed) CNG Spark 
Advance (BTDC) 

HCNG Spark 
Advance (BTDC) 

10 hp 27.5 27.5 
20 hp 25 25.5 
30 hp 24 24.5 

     
Vehicle Speed: 30 MPH     

Transmission Position D (low speed) CNG Spark 
Advance (BTDC) 

HCNG Spark 
Advance (BTDC) 

10 hp 22.5 22.5 
20 hp 20.5 21 
30 hp 19.5 19.5 

Transmission Position D1 (high speed) CNG Spark 
Advance (BTDC) 

HCNG Spark 
Advance (BTDC) 

10 hp 32 32.5 
20 hp 31 31 
30 hp 29.5 30.5  
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4.3 Characteristics of Hydrogen Combustion 

Combustion characterization describes how the air-fuel charge inside the cylinder 

is burned. In the next section, the effect of 33 percent hydrogen on natural gas 

combustion in the spark-ignition engine at 1350 RPM, 40 percent wide-open throttle and  

1370 RPM, 67 percent wide-open throttle are compared. This section shows the pressure 

measurements, heat release trends, and combustion duration, as well as temperature and 

coefficient of variance. 

4.3.1 Pressure  

Pressure measurements are useful tools for indicating variations in the phasing 

and duration of combustion. They are also used to calculate the apparent heat release rate.  

Under identical speed and load conditions, pressure during combustion of HCNG 

was greater than that of neat natural gas. Two examples of pressure during a combustion 

cycle from the 30 miles-per-hour test are found in Figure 4-3 and Figure 4-4. Karim et al. 

[24] observed an increase of pressure of 1 bar per 10 percent hydrogen addition during 

lean burn conditions. In this study, at stoichiometric conditions, a larger increase in peak 

pressure is seen. A 5 bar increase in peak pressure with HCNG is observed, equivalent to 

a 1.5 bar increase per 10 percent hydrogen addition.  
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Volume change and combustion have the largest effects on cylinder pressure [11]. 

Since there are no volumetric changes in the cylinder, the pressure increases that occur in 

the cylinder are a result of the HCNG combustion process. As Figure 4-3 and Figure 4-4 

show, HCNG increases the pressure at a much more rapid pace than CNG, peaking close 

to top dead center. Pressure after spark discharge is indicative of heat release of the fuel 

during combustion. Peak pressure occurring closer to top dead center more closely 

resembles the Otto cycle, which indicates an increase in the thermal efficiency of the 

combustion.   

 Error bars show the 95 percent confidence interval on the pressure data during 

areas of high uncertainty. Because the pressure is used to calculate the rest of the 

combustion statistics in this section, it is assumed the characteristics of combustion are 

statistically significant.  
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4.3.2 Apparent Heat Release 

 To study the effect of fuel on bulk combustion characteristics, heat release 

analyses were performed at all testing conditions. The heat release rates were different 

between the two fuels, as shown in Figure 4-5 and Figure 4-6. These figures showed that 

hydrogen addition resulted in a faster release of fuel energy, when compared with CNG. 

The results also indicated that HCNG combustion peak heat release rate increases 25 

percent and occurs 9 crank angle degrees before that of CNG. 

 Increased heat release early in the power stroke puts extra stress on the structural 

integrity of the cylinder, and increases NO formation, but it also allows for best indicated 

thermal efficiency. In Figure 4-5 and Figure 4-6 HCNG releases more than half of the 
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energy during the compression stroke, before top dead center. Energy released when the 

volume of the cylinder is decreasing works against the motion of the piston decreasing 

indicated work, which causes a decrease in the power output of the cylinder. These are 

considerable throttling losses that detract from the thermal efficiency of the combustion 

process with HCNG. 

 The heat release characteristics in this study exhibit non-ideal combustion. 

Heywood [11] states that addition of exhaust gas recirculation (EGR) increases the burn 

duration in the cylinder. In the case study, EGR of 20 percent increases the flame 

development angle and combustion duration 50 percent. If the exhaust gas recirculation 

valve was connected, it would retard heat release, reducing losses in indicated work. 
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4.3.2 Fuel Burning Rates 

The computed mass fraction burned approximates the burned mass inside the 

cylinder and are an indicator of combustion performance within the cylinder. Normalized 

heat release is representative of the mass fraction burned in the cylinder. Figure 4-7 and 

Figure 4-8 show the normalized cumulative heat release that occurred at 1350 and 1370 

RPM, both at 30 hp road load. 

It is advantageous to characterize different stages of combustion by the duration 

in crank angle degrees. The crank angle degrees covered during each stage of combustion 

are indicative of the combustion process. Figure 4-7 and Figure 4-8 show that compared 

with natural gas, hydrogen addition decreases the flame development angle and 
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combustion duration. Hydrogen also causes more fuel to burn before top dead center. 

This early burn of the fuel releases energy during the compression stroke, which results 

in a decrease in thermal efficiency. 
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Figure 4-7: Normalized Heat Release 1350 RPM, 10 hp Road Load 
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The quicker burn reduces the amount of time during the combustion cycle that the 

gases are at high temperature, which results in a reduction in heat transfer losses. The 

slope of the line in Figures 4-7 and Figure 4-8 during the combustion duration is 

indicative of the speed of the fuel burn. While both fuels begin combustion at the same 

time, the HCNG combustion reaction progresses much faster.  

Figure 4-9 shows the peak heat release rate for the tests run at 30 miles per hour. 

A higher heat release rate indicates a larger mass of fuel being burned per crank angle 

degree. As this figure shows, the addition of hydrogen to natural gas increases the peak 

burn rate of the fuel and is independent of load. At all testing conditions, HCNG 

increases the maximum burn rate of the fuel by 25 percent, compared with CNG. 
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Figure 4-8: Normalized Heat Release 1370 RPM, 30 hp Road Load 
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4.3.3 Calculated In-Cylinder Temperature 

An increase in bulk cylinder temperature contributes to heat loss to the 

surroundings and drives NO formation. The temperatures calculated using the pressure 

data show that the rapid combustion of HCNG increase the bulk cylinder temperature.  

In this study, an increase in temperatures from 7 to 10 percent was observed with 

hydrogen addition. Figure 4-10 and Figure 4-11 show the single-zone analysis of bulk 

cylinder temperature at 1350 and 1370 RPM. It must be noted that during normal 

operation, the vehicle as modified by Collier Technologies employed a significant 

amount of supplemental exhaust gas recirculation in order to lower combustion 

temperatures and prevent NOx formation.  
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The peak temperature for HCNG combustion occurs closer to top dead center, 

when the volume of the cylinder is the smallest. Intense heat at this stage in combustion 

increases the transfer of heat to the combustion chamber surfaces, which reduces the 

pressure of the system. Increased temperature is sustained across a longer period during 

HCNG combustion than with CNG. The more time HCNG spends at high temperature, 

the more NO formation occurs.  
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4.3.4 Heat Transfer  

Reducing the heat loss to the surroundings can increase the thermal efficiency of 

combustion. Previous findings [1] have attributed increased thermal efficiency in HCNG 

combustion, when compared to CNG combustion, to a faster burn time. This increased 

efficiency with HCNG occurs because lower combustion duration reduces the time for 

which the cylinder is at high temperatures, losing heat to the surroundings. In this study, 

the amount of heat lost to the outer walls and carried away by the coolant was calculated 

using the Woschni heat transfer correlation. 

The expansion stroke is where the most significant heat transfer losses occur. 

There, the heat transfer will cause the gas pressure in the cycle to fall below isentropic 
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expansion as the volume increases, resulting in a decrease in thermal efficiency. Figure 4-

12 and Figure 4-13 show the Neat Heat Release and Heat Transfer at 1350 and 1370 

RPM. The figures indicate the cumulative heat transferred as net work on the system, Qn, 

and heat transferred to the surroundings, Qht.  

More heat is transferred to the surroundings because of elevated combustion 

temperatures with HCNG combustion. While previous published work has stated that 

HCNG’s decrease in combustion duration would reduce the heat transfer to the 

surroundings, an earlier start of combustion and higher bulk cylinder temperatures result 

in greater transfer of energy to the cylinder wall. 

It is interesting to note that as much as 50 percent of the energy available in the 

cylinder is lost to the coolant. While this number appears to be high, low speed and load 

conditions for a six-cylinder spark-ignited engine at the same engine speed were found by 

Ament et al. [34] to lose 50 percent of the fuel heating value to the coolant load. This 

validates the high heat transfer rates for HCNG and CNG combustion found in this study. 

Net heat release is equal to the sensible energy change and work transfer to the 

piston [11]. Since these two traces are run at the same operating conditions, it can be 

assumed that the work transferred to the piston is equal. Neat natural gas combustion has 

a higher net heat release than HCNG because of the increased losses via heat transfer to 

the surroundings. 

As the engine load increases, the difference in energy losses between the HCNG 

and CNG is reduced. As the engine load increases, a higher percentage of fuel energy is 

converted to work on the piston, with only 40 percent of energy lost to the surroundings. 
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During the increase engine load, combustion is more complete which reduces the impact 

of the hydrogen.  
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4.3.4 Coefficient of Variance  

Reduction in coefficient of variance of indicated mean effective pressure (COV) 

is one of the main advantages of hydrogen addition to natural gas. This study recorded 

the values of COV at all test conditions. All values fell within the acceptable limits of 

engine stability. All conditions reported a COV of less than 2.5. The data shows that there 

is no advantage of COV with HCNG under these near stoichiometric combustion 

conditions. Any variance in combustion was probably due to cylinder residuals, which 

fluctuated in composition and quantity, or because of poor throttle control by the driver 

during the testing sequence. Low coefficient of variance of around 1 percent has been 
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Figure 4-13:  Net Heat Release and Heat Transfer 1370 RPM, 30 hp Road Load 
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reported in the literature [15] during stoichiometric combustion of HCNG and CNG. The 

investigation in the COV of HCNG and CNG combustion is of interest for lean 

combustion conditions. With increasing the excess air, combustion stability decreases. 

Hydrogen has been shown to increase combustion stability at these conditions, but its 

effect is negated during stoichiometric combustion. 

4.4 Combustion Trends 

Hydrogen has been shown to assist combustion at lower loads and reduce 

combustion performance at higher loads [5, 15]. This section discusses combustion 

performance, which was evaluated at 30 miles per hour at various speeds and loads. The 

goal was to determine the effect of hydrogen on natural gas combustion under varying 

conditions. Three test points were acquired at transmission position “D” and “D1,” at 

road loads of 10, 20, and 30 horsepower. 

4.4.1  Combustion Duration 

Increased load on the vehicle increases the load on the engine. Road load 

increases can be from uphill conditions, accessory loads, or road conditions. As the load 

increases, the rate of combustion increases rapidly because more fuel must be burned in 

the combustion cycle to produce the same power output. To produce the same amount of 

output from the cylinder, the engine must increase injection time in order to inject more 

fuel into the cylinder. Hydrogen content of 33 percent in natural gas represents only 9 
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percent of the fuel energy, which means some power is lost when using HCNG due to the 

reduction of volumetric energy content. 

Figure 4-14 demonstrates the effects of hydrogen during a significant load 

increase on the engine. As the engine load increases, overall combustion duration 

decreases. According to scan tool data, the load on the engine during a road load of 10, 

20 and 30 horsepower is 40, 57 and 66 percent, respectively, of wide-open throttle. As 

the load on the engine increases significantly from 40 to 67 percent throttle, reduction in 

combustion duration with hydrogen addition is reduced.  

Figure 4-15 shows high-speed tests in which HCNG reduces combustion duration.  

High engine speed maximizes HCNG speed reduction [11]. Hydrogen addition at these 

high combustion duration points reduces the crank angle interval covered by 25 percent. 

The engine load conditions at this transmission position are 35, 40 and 43 percent wide-

open throttle. At these small engine load increases, the combustion duration does not 

change significantly.  
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Figure 4-14: Combustion Duration at 1350, 1360 and 1370 RPM 
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 Figure 4-15: Combustion Duration at 3700, 3750, 3800 RPM 
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4.4.2 Flame Development Angle 

The flame development angle is the distance from the spark to when 10 percent of 

the mass of the fuel has burned [11]. Increasing hydrogen addition has proven to decrease 

the flame development angle in the literature [4]. This early stage of combustion features 

a mostly laminar flame that forms a spherical flame kernel around the spark plug gap. 

The flame interacts with the surrounding turbulent flow increasing the surface area of the 

flame, which increases the propagation speed of the flame. When hydrogen enters the 

flame kernel, its reaction with the flame front increases the speed at which the reaction 

zone propagates. Across all testing conditions, HCNG showed a reduction in flame 

development angle.  

Figure 4-16 shows the decrease in flame development angle that occurred in these 

tests. As the engine load nears 67 percent of wide-open throttle, at a road load of 40 

horsepower, the effects of hydrogen are reduced.  

As with combustion duration, during high-speed conditions a decrease in the 

flame development angle is observed during HCNG combustion. This is shown in 

Figure 4-17. For both indications of combustion speed, the effect of hydrogen addition in 

reducing flame development angle is more pronounced at higher speeds.  
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Figure 4-16: Flame Development Angle at 1350, 1360 and 1370 RPM 
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Figure 4-17: Flame Development Angle at 3700, 3750, 3800 RPM 
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4.4.3 Indicated Thermal Efficiency 

Spark-ignition engines use a throttle plate to control engine power. As the throttle 

plate closes, intake pressure and fuel flow are reduced, resulting in lower intake 

pressures. These lower pressures contribute to combustion inefficiencies. This effect is 

clearly seen in Figure 4-18, which illustrates how load increases the thermal efficiency of 

the engine. The values obtained for indicated thermal efficiency in natural gas engines 

range from 33 to 38 percent, which is 10 percent higher than that obtained in gasoline 

spark-ignited engines. The main factor accounting for this discrepancy is that natural gas 

engines tend to have a higher compression ratio, which increases the thermal efficiency, 

and inaccuracy of mass measurements from instrumentation can reduce the theoretical 

energy available. 

Many papers cite hydrogen addition as increasing the indicated thermal efficiency 

of natural gas [4, 35], however Figure 4-18 shows that compressed natural gas has a 

higher thermal efficiency than HCNG at all loads. While the data shows a deviation from 

expected thermal efficiency results, it is similar to results found by Bauer et al. [1] when 

testing an engine running at 700 and 900 rpm. The reduced thermal efficiency observed 

in this study is a result of the extra heat lost during high temperature combustion of 

HCNG and increased losses in indicated work due to early combustion. Improvement in 

thermal efficiency would be observed if EGR was reconnected or spark timing was 

retarded. 
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4.5 Emissions Results 

The reduction of regulated pollutants is one of the main motivations for HCNG 

research. In this study, the engine-out exhaust measurements were recorded to determine 

the pre-catalyst effect of hydrogen addition on natural gas combustion. It was not 

possible to accurately record the actual load on the engine so the results can only be 

compared at the same testing conditions. 

4.5.1 Carbon Dioxide 

Carbon dioxide (CO2) is a product of complete combustion. Figure 4-19 shows 

the CO2 emissions present in the exhaust during this study. It was found that a reduction 
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 Figure 4-18: Indicated Thermal Efficiency at 1350, 1360 and 1370 RPM 
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of carbon-based fuel in the charge reduces the CO2 formation by 10 percent. Reductions 

in CO2 were independent of increased load. Natural gas fuel contains approximately 7.2 

percent more carbon per unit energy than the HCNG used in the study. The engine-out 

CO2 differences between the fuels corresponded with the amount of carbon oxidized in 

the combustion process. 

4.5.2 Carbon Monoxide Emissions 

 Carbon monoxide (CO) emissions are produced in high amounts during part load 

conditions due to incomplete oxidation. Decreased CO emissions have been observed by 

Andersson [15] at stoichiometric conditions. Figure 4-20 shows the carbon monoxide 

emissions produced over increasing loads. CO oxidation was enhanced by the higher 
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temperatures of the postflame gases during HCNG combustion. While reductions in CO 

concentration are seen with hydrogen addition, the results are statistically insignificant 

due to the range covered by the error bars. Therefore no conclusions can be drawn. 

4.5.3 Oxides of Nitrogen 

 High temperatures that occur during combustion are the main contributor to nitric 

oxide (NO) formation. In this study, the test vehicle controlled the air-fuel ratio to run 

stoichiometrically, which increased peak temperatures over lean-burn combustion. These 

higher temperatures were amplified by the hydrogen addition. Increased exposure to 

these post-combustion temperatures drove NO production, as shown in Figure 4-21. An 
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Figure 4-20: CO  at 1350, 1360 and 1370 RPM 
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increase in engine-out oxides of nitrogen emissions with HCNG has also been observed 

in the literature [5, 15, 22]. 

4.6 Vehicle Speed 

Two different vehicle speeds of 15 and 30 miles per hour were measured to 

determine the effect that speed has on combustion performance. After all of the 

calculations were performed, combustion performance in the cylinder when the vehicle is 

traveling at 15 miles per hour is nearly identical to when it is travelling at 30 miles per 

hour.   Table 4-2 shows the engine load as a percentage of wide open throttle according 

to the ECU. Vehicle tests run at 15 miles per hour have a slightly lower load than the 

tests run at 30 miles per hour. Combustion trends are very similar at the same load 
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positions. The trends observed during increased loading conditions already have been 

addressed during this study and are not reported in detail in this section. 

 

 Table 4-2: Road Load at Low Speed Test Settings 

Road Load (hp) 15 mph Load (%) 30 mph Load (%) 
10 38.00 42.00 
20 53.00 57.00 
30 58.00 65.00  
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Chapter 5 
 

Conclusions and Future Work 

5.1 Conclusions 

Based on engine testing and simulation results, the following conclusions were 

drawn: 

1. Stoichiometric combustion of HCNG reduces ignition delay and creates conditions 

conducive for a faster burn. 

2. HCNG reacts faster than natural gas, producing a decrease in combustion duration. 

Apparent heat release rates are advanced which work against the motion of the piston. 

3. Bulk cylinder temperatures of HCNG increase energy losses to the surroundings. 

4. Work against the piston and heat transfer to the surroundings reduces thermal 

efficiency of HCNG compared with CNG. 

5. The effects of hydrogen addition, (i.e., decreased flame development angle and 

combustion duration, increased temperatures, increased heat loss), decrease as the 

load on the engine increases. 

6. At the same road load, changes in vehicle speed only slightly reduce the load on 

the engine, resulting in similar combustion performance. 

295



79 

 

5.2 Future Work 

During this study, combustion performance was measured in the vehicle with no 

modifications except for fuel to determine the effect of hydrogen in natural gas 

combustion in a vehicle. Limits due to insufficient resources prevented measurement of 

fully functional combustion performance in the vehicle. For a more in-depth study, the 

following suggestions for future work are proposed. 

1. Reprogram the ECU to optimize the engine to run based on the test fuel for 

combustion comparison. 

2. Increase measuring equipment on the vehicle to measure actual operating 

conditions including EGR, fuel rail pressures to understand in-cylinder 

combustion processes better. 
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Appendix A 
 

Fuel Properties 

A.1 Natural Gas Composition    

A.2 Hydrogen-Natural Gas Composition 

 

Table A-1: Natural Gas Composition 

Natural Gas Constituents % Volume 
CH4 89.94 
C2H6 5.26 
C3H8 0.66 
C4H10 0.05 
H2 0.00 
N2 4.08  

 

Table A-2: HCNG Composition 

HCNG Constituents % Volume 
CH4 60.26 
C2H6 3.53 
C3H8 0.44 
C4H10 0.04 
H2 33.00 
N2 2.74  
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A.3 Calculated Fuel Characteristics 

Table A-3: Calculated Fuel Characteristics 

 CNG HCNG 
Density (g/L) 0.7822 0.5538 
LHV (kJ/kg) 46402 50358 
Stoichiometric Air Fuel Ratio 17.18 18.10  
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Appendix B 
 

Matlab Heat Release Code 

B.1 Matlab Code programmed in version 2007b 

% Program written by Jamie Clark, September 2007 
% Updated February 1, 2008 
  
% Program reads Pressure and Volume Data from pressure traces 
  
% Data is taken to calculate heat release profile 
  
clc 
clear all 
  
% read data files 
input = dlmread ('C:\Documents and Settings\Jamie\Desktop\Tests 
9_7_07\33','\t',1); 
  
%test properties 
speed = 1350; %speed in rpms 
intakeAir = 110; %intake air degF 
massair = 42.7; %mass flow of air in g/s 
  
% fuel specific properties 
afratio = 17.18; %air/fuel ratio of the mixture in cylinder 
LHV = 46402; %lower heating value of fuel in kJ/kg 
eqrat = 1.0; %equivalent ratio 
  
%CALCULATIONS 
  
% store the data from file in usable matrices 
for i = 1:7200 
    degCA(i) = input(i,1) + 0.1; % Crank angle position 
    CylPres(i) = input (i,2); % In-cylinder Pressure 
end 
  
% engine properties 
cyl = 8; %number of cylinders in the engine 
bore = .09; % m 
stroke = .106; % m 
cr = 11; % compression ratio 
conrod = .1691; % m - connecting rod length 
crankrad = .053; % m 
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%DAQ properties 
delCA = 0.1; %frequency of pressure measurements in degrees 
  
% fuel specific initial conditions 
gamma = 1.35; %initialized gamma 
Cv = .897; %initialize Cv 
  
% unit conversions 
umassair = massair * 60 / 1000; %mass airflow conversion to kg/min 
mair = umassair/cyl/(speed/2); % mass flow of air in kg 
Tin = ((intakeAir - 32) * 5/9) + 273.15; %convert temp to Kelvin 
R = 8.314/29*1000; %initialize R - J/kgK 
rps = speed / 60; %engine speed in radians 
sp = 2*stroke*rps; %mean piston speed 
f = conrod/crankrad; % for heat transfer 
mfuel = mair/afratio; %calculate mass of fuel 
  
% Heat Transfer Calcs 
C1 = 2.28; %constant c1 from Heywood 
w = C1 * sp; % average flow velocity inside the cylinder for 
compression and expansion - can add "+ C2*Vd*Tr/prVr*(Pcyl-Pmotored)" 
Twall = 450; %assumed wall temperature in Kelvin 
  
%Engine Volume calculations 
Vd = pi*bore^2*stroke/4; %swept volume, displaced volume 
Vc = Vd/(cr-1);%clearance volume 
  
for i = 1:7200 
    radCA(i) = degCA(i)*pi/180; % convert crank angle position to 
radians 
    cylVol(i) = Vc + (pi/4 * bore^2) * (crankrad*(1-
cos(radCA(i))+crankrad/(4*conrod)*(1-cos(2*radCA(i))))); %find volume 
of cylinder 
end 
  
for i = 2:7199 %intermediate pressure smoothing and Net IMEP 
    IntPres(i) = (CylPres(i-1) + CylPres(i+1))/2; 
    dv(i) = (cylVol(i+1)-cylVol(i-1))/(2*delCA); %calculate dv 
(m^3/deg) 
  
    nimep(i) = (CylPres(i)+CylPres(i+1)) * dv(i); 
    Nimep = sum(nimep)/2/Vd/10; 
     
    if (i > 1800) && (i< 5400) 
        gimep(i) = (CylPres(i)+CylPres(i+1))*dv(i); 
        Gimep = sum(gimep)/2/Vd/10; 
    end 
  
    ica(i)=degCA(i); 
end 
  
for i = 3:7198  
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    Pres(i) = ((IntPres(i-1) + IntPres(i) + IntPres(i+1))/3); %smoothed 
pressure trace 
    Pres(i) = Pres(i)*100000; % convert bar to Pa 
    kPres(i)= Pres(i)/1000; %Pressures in kPa 
    pca(i) = degCA(i);  
end 
  
for i = 5:7195 
    dp(i) = (-Pres(i+2)+8*Pres(i+1)-8*Pres(i-1)+Pres(i-2))/(12*delCA); 
%calculate dp (Pa/deg) 
    ppca(i) = degCA(i); 
end 
  
% Calc net IMEP 
  
%initialize dq, T and Q 
for i = 3:5436 
    dq(i)= 0.0; 
    Q(i)= 0.0; 
    T(i)= Tin; 
    T2(i) = Tin; 
    tg(i) = Tin; 
    Qtot = 0; 
    done10 = 0; 
    done50 = 0; 
    done90 = 0; 
    donesoc = 0; 
    pair(i) = 0;  
    Re(i) = 0; 
    mu(i) = 0; 
    Aw(i) = 0; 
    hc(i) = 0; 
    dQwall(i) = 0; 
    Qwall(i) = 0; 
    dQw(i) = 0; 
    mb(i)=0; 
    startmfb=0; 
end 
  
% temperature measurements 
for i = 2000:5436 
     
    % Calculate Heat Release   
    if (i >= 3000) && (i <= 4950) 
        dq(i) = (1/(gamma-1))*(gamma*Pres(i)*dv(i)+cylVol(i)*dp(i)); 
%solve Instantaneous Heat release J/deg 
        Q(i) = dq(i)* delCA + Q(i-1); %Cumulative heat Release in J    
    end 
  
    % first temperature calculation 
    dt(i) = 1/ ((mair + mfuel)*Cv)*((dq(i)/1000)-kPres(i)*dv(i)); 
%calculate change in temperature 
    T(i) = dt(i) * delCA + T(i-1); %intergrate temp 
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    % second temperature calculation 
    dt2(i) = 1/ ( (mair +((Q(i)/1000)/LHV))*Cv)*(dq(i)/1000 - kPres(i) 
* dv(i)); 
    T2(i) = dt2(i) * delCA + T2(i-1); 
       
    % third Temperature Caculation 
    tg(i) = (Pres(i) * cylVol(i)) / (R * (mair + mfuel)) ; % ideal gas 
law temperature calculation, gives highest # 
     
    % Woschni heat transfer 
    Aw(i) = (pi * bore ^ 2 / 2) + ((pi * bore * stroke / 2) * (f + 1 - 
cos(radCA(i)) + (f ^ 2 - (sin(radCA(i))) ^ 2) ^ 0.5)); % area of wall 
exposed unit of m2 
    %pair(i) = Pres(i)/(R*tg(i)); % density of air 
    %mu(i) = 3.3 * 10^-7 * tg(i) ^ 0.7/(1 + 0.027 * eqrat); %kg/msK 
    %Re(i) = pair(i) * sp * bore / mu(i); %Renyolds number 
    hc(i) = 3.26 * bore^-0.2 * (Pres(i)/1000)^0.8 * tg(i)^-0.55 * 
w^0.8; % heat transfer coefficient in W/m2K pressure in kPa 
    dQw(i) = hc(i) * Aw(i) * (T(i) - Twall) ; %J/s 
    dQwall(i) = dQw(i) * (1/(360*rps)); % convert Watt to J/deg 
    Qwall(i) = dQwall(i) * delCA + Qwall(i-1); % cumulative heat 
transfer 
     
    % recalculate gamma 
    if T(i) > 1000 
        gamma = 1.485 - 0.00025527 * T(i) + 1.3911e-7 * T(i)^2 - 
3.6506e-11 * T(i)^3 + 3.6966e-15 * T(i)^4; 
    else 
        gamma = 1.3966 + 6.0455e-5 * T(i) - 1.5686e-7 * T(i)^2 - 
5.6788e-11 * T(i)^3 + 9.2994e-14 * T(i)^4; 
    end    
     
    %crank angle referencing for plotting 
    ca(i)=degCA(i); 
     
    % recalculate Cv 
    Cv = .287 / (gamma - 1); 
     
    % calculate gross HR 
    dQgross(i) = dq(i) + dQwall(i); %J/deg 
    dmb(i) = dQgross(i)/(LHV*1000); % fuel burn rate kg/deg 
  
    % Computation of total fraction burned (kg/deg) 
    mb(i) = dmb(i) * delCA + mb(i-1); 
     
    % Integrate to get total heat release 
    Qgross(i) = Q(i) + Qwall(i); 
end 
  
%calculate MFB 
  
for i = 3200:5000 
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    % convert Q to % 
    maxQ = max(Q); 
    minQ = min(Q); 
    perQ(i) = (Q(i)-minQ) / (maxQ-minQ) * 100; 
    
    %determine CA and Pressure at SOC, 10, 50 and 90% mfb 
    if (perQ(i) == 0) 
        startmfb = 1; 
    end 
    if (startmfb == 1) 
         if (perQ(i) > 0) && (donesoc == 0) 
            CAsoc = i/10; 
            Psoc = kPres(i); 
            donesoc = 1; 
        elseif (perQ(i) >=10) && (done10 == 0) 
            CAmfb10 = i/10; 
            Pmfb10 = kPres(i); 
            done10 = 1; 
        elseif (perQ(i) >= 50) && (done50 == 0) 
            CAmfb50 = i/10; 
            Pmfb50 = kPres(i); 
            done50 = 1; 
        elseif (perQ(i) >= 90) && (done90 == 0) 
            CAmfb90 = i/10; 
            Pmfb90 = kPres(i); 
            done90 = 1; 
        end 
    end 
        mca(i)=degCA(i); 
end 
  
% combustion characteristics 
  
tento90 = CAmfb90 - CAmfb10; %10 - 90 mfb 
FDA = CAmfb10 - CAsoc; % flame development angle 
  
% FDA = CAmfb10 - CAsoc; % flame development angle 
%efficiencies 
  
% DATA STORAGE & OUTPUT 
% save values in matrix form 
  
  
out(1,1) = max(Q); %J 
out(2,1) = max(T); %K 
out(3,1) = CAsoc; %CAD 
out(4,1) = Psoc; %kPa 
out(5,1) = CAmfb10; %CAD 
out(6,1) = Pmfb10; %kPa 
out(7,1) = CAmfb50; %CAD 
out(8,1) = Pmfb50; %kPa 
out(9,1) = CAmfb90; %CAD 
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out(10,1) = Pmfb90; %kPa 
out(11,1) = FDA; %flame development angle, total CAD 
out(12,1) = tento90; %total CAD 
out(13,1) = max(dq); %J/deg 
out(14,1) = max(dmb); %kg/deg 
out(15,1) = Gimep; %kPa 
out(16,1) = Nimep; %kPa 
  
%output(18,1) = combeff; 
  
dlmwrite('output.txt',out) 
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ABSTRACT 

 In this study, the effect of hydrogen assisted diesel combustion on conventional 

and advanced combustion modes was investigated on a DDC/VM Motori 2.5L, 4-

cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with 

exhaust emission being the main focus. Hydrogen was substituted for diesel fuel on a 

percent energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15%.  The conventional 

combustion modes studied consisted of four engine combinations of speed and load 

(1800 rpm at 25% of maximum output, 1800 rpm at 75% of maximum output, 3600 rpm 

at 25% of maximum output, and 3600 rpm at 75% of maximum output). A significant 

retarding of injection timing by the diesel fuel injection timing map in the engine’s 

electronic control unit (ECU) was observed during the increased aspiration of hydrogen.  

The retarding of injection timing resulted in significant emission reductions, however, the 

same emission reductions were achieved without aspirated hydrogen by manually 

retarding the injection timing.  Subsequently, hydrogen assisted diesel combustion was 

conducted, with the pilot and main injection timings locked, to study the effects caused 

directly by hydrogen addition.  

 Hydrogen assisted diesel combustion resulted in a modest increase of NOX 

emissions and a NO / NO2 trade-off in which NO emissions decreased and NO2 emissions 

increased, with NO2 becoming the dominate NOX component in some circumstances. 

Increased aspiration of hydrogen resulted in PM, and HC emissions which fluctuated 

with speed and load.  Predominantly, CO and CO2 decreased with the increase of 
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hydrogen. The aspiration of hydrogen into the engine modestly decreased fuel economy 

due to the reduction of oxygen in the cylinder charge.  

 In the advanced combustion portion of the study, the engine was operated under a 

partially-premixed charge compression ignition PCCI mode known as high efficiency 

clean combustion (HECC), in which NOX and PM emissions dramatically decreased 

while fuel economy was maintained.  Hydrogen assisted diesel combustion was 

performed while the engine operated in the HECC mode, which resulted in emissions and 

combustion impacts similar to those observed in the conventional combustion modes.  
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Chapter 1 
 

Introduction 

1.1 Motivation 

 Fears of dwindling oil reserves and new regulations on diesel engine emissions 

have driven research to focus on the use of alternative fuels.  The utilization of alternative 

fuel diminishes the reliance on petroleum based fuel which is a step towards energy 

security.  In this thesis, hydrogen was used as a supplemental fuel in a production diesel 

engine and thus replaced a portion of the diesel fuel demanded to produce engine output.  

The engine exhaust emissions, produced when hydrogen fuel was substituted for diesel, 

were of primary interest.  By changing the fuel used to power an engine, the resulting 

engine-out emissions will change.  However, as in the case of NOX emissions from bio-

diesel, the emissions resulting from alternative fuels may not be beneficial [1]. 

 The literature review, presented in Chapter 2, on diesel pilot hydrogen ignition, 

indicates that hydrogen substitution is a promising method of reducing undesired exhaust 

emissions, especially at high rates of hydrogen substitution.   The literature reports 

studies exclusively performed on small or single cylinder diesel engines.  The hydrogen 

assisted diesel combustion studies in this thesis were performed on a DDC/VM Motori 

2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine.  

This engine was available in the European version of the Jeep Cherokee and Chrysler 

Voyager.  
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 Advanced combustion modes, such as homogeneous charge compression ignition 

(HCCI) and premixed charge compression ignition (PCCI), are currently of interest to 

further reduce diesel emissions, specifically NOX and particulate matter (PM). As 

presented in the literature review of Chapter 2, HCCI and PCCI modes induce the engine 

to combust the fuel in the pre-mixed phase, resulting in a fuel lean charge and lowered 

combustion temperature, and thus, resulting in an engine operation away from zones of 

NOX and PM formation. In this thesis, the DDC 2.5L engine was operated on a particular 

PCCI mode, high efficiency clean combustion (HECC), developed by Wagner, Sluder 

and coworkers at Oak Ridge National Laboratory.   This study represents the first 

published operation of the HECC mode outside of Oak Ridge National Laboratory.  In 

novel experimentation, the DDC 2.5L engine was operated in the HECC mode while 

hydrogen assisted diesel combustion was performed, in hopes to further reduce NOX and 

PM emissions and reduce cycle-to-cycle variations, common to advanced combustion 

modes which rely on high percentages of exhaust gas recirculation EGR.   

1.2 Objective and Hypothesis 

 The objectives of this work are to test the following hypotheses.  

! A production diesel engine can utilize gaseous hydrogen fuel, via aspiration, in 

combination with diesel fuel with minimal modifications to the engine.  

! The aspiration of hydrogen into a diesel engine will increase the pre-mixed 

combustion phase of a diesel engine, reducing NOX and PM emissions. 
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! Small quantities of aspirated hydrogen will have little effect on engine 

performance and emission.  

! The HECC mode can be achieved using a production DDC/VM Motori 2.5L, 4-

cylinder, turbocharged, common rail, direct injection light-duty diesel engine. 

While operating in the HECC mode, the addition of hydrogen to the combustion 

chamber will smooth-out the combustion process, quantified by the coefficient of 

variance (COV) of the indicated mean effective pressure (IMEP) and further 

reduce NOX and PM emissions.

Chapter 2 
 

Literature Review 

2.1  Diesel Combustion 

Diesel engines are of interest due their higher efficiency in comparison to spark 

ignited (SI) engines. The diesel engine is named after Rudolph Diesel who first invented 

the engine in 1897. The diesel engine, also known as the compression ignition (CI) 

engine, operates under the basis of the diesel cycle.  The idealized diesel cycle is a 

constant pressure heat addition cycle, which differs from the idealized Otto cycle of the 

SI engine in which heat addition occurs at a constant volume.  Figure 2.1 displays the 

ideal diesel cycle.  
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The four processes of the diesel cycle shown in Figure 2.1 are [3]: 

1 to 2 isentropic compression 

2 to 3 constant pressure heat addition 

3 to 4 isentropic expansion 

4 to 1 constant volume heat rejection 

 The four processes of the diesel cycle are related to the four strokes (or stages) of 

the diesel engine given in Figure 2.2.  However, for every four strokes of a diesel engine, 

there are two complete revolutions of the engine. During the intake stroke the piston 

moves down at which time, the intake values are open, drawing air into the cylinder.  

During the compression stroke, the intake valves close and the position travels to its apex 

known as top-dead-center (TDC), where the air undergoes isentropic compression.  

According to the ideal gas law, increased pressure causes an increase in temperature. The 

cylinder now contains compressed hot air.  Diesel fuel is then injected into the cylinder. 

As the diesel fuel enters the cylinder it autoignites due to the high temperature and 

pressurized air. The combustion of the diesel fuel increases the in-cylinder temperature 

 

 
Figure 2.1: Pressure–volume diagram of an ideal Diesel cycle. [2] 
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and pressure which pushes the piston down during the expansion (or power) stroke. The 

piston then moves to the bottom of the cylinder. At this point the exhaust valves open as 

the cylinder moves back up to TDC forcing the exhaust gases out of the cylinder, for the 

exhaust stroke.   

   

A key thermodynamic concept of the internal combustion (IC) engine is that air is 

the working fluid.  An IC engine is an air pump. Thus, the torque and power rating of an 

IC engine are governed by the amount of air which can be forced into the cylinders.  

Therefore, turbochargers are used to increase the mass of the air charge in a diesel 

engine.  In comparison to the SI engine, a CI engine operates at low RPM (rotation per 

minute).  Thus, a CI engine at a given cylinder displacement will have a lower power 

rating then an SI engine of similar displacement.  

 

Figure 2.2: Four-stroke engine cycle [4]. 
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 Typically, hydrocarbon fuels have been used to fuel IC engines.  Complete 

combustion of hydrocarbon fuel occurs under stoichiometric conditions.  The 

stoichiometric air-fuel ratio is the ratio of air to fuel where there is just of enough of both 

for complete oxidation of the fuel. The value of the stoichiometric air-fuel ratio is unique 

to every hydrocarbon fuel.  In the generic formula for diesel fuel, C10.8H18.7, the 

stoichiometric air fuel ratio is14.33 g-air/g-fuel. Under stoichiometric combustion the 

maximum heat release for a given fuel is achieved [5].  Equation 2.1 and. 2.2 display the 

generic formula for hydrocarbon combustion [6]. In this equation, complete combustion 

is assumed. The only products are CO2 and H2O.  To a first approximation, N2 in the air 

does not react but merely acts as an inert diluent.    

 

Complete combustion, shown in Eq. 2.1, in which only CO2, H2O and N2 are the 

products, never occurs in reality. Intermediate products are formed and incomplete 

combustion occurs due to the air-fuel mixture not being stoichiometric. Globally the air-

fuel ratio of a CI engine is lean, but in local regions where combustion principally occurs, 

the ratio is rich.  There will also be pockets of lean and stoichiometric combustion 

occurring. The equivalence ratio (#%&'defined in Eq. 2.3 [6], is used to express whether a 

mixture is rich or lean.  Equivalence ratio is the ratio of the calculated stoichiometric air-

fuel ratio over the actual air-fuel ratio. 

22222 76.3)2/()76.3( aNOHyxCONOaHC yx (()*)((  2.1 

 
4/yxa (+  2.2 
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Different products of incomplete combustion are created as the equivalence ratio 

locally shifts from lean to rich [6].   Equation 2.1 can be expanded to include products of 

incomplete combustion by adding the water-gas shift reaction, Eq. 2.4, to the equation.  

The result is Eq. 2.5, in which no dissociation to minor species is assumed.   

 

 

  Equation 2.5 is only a simple model, since an abundance of minor species 

are actually formed from the combustion of a hydrocarbon fuel.  However, a more 

complex model requires computer software to account for the conditions such as 

pressure, temperature, and localized equivalence ratio along with the reactions that occur 

between all the intermediate species.   

Equation 2.7  and Eq. 2.8  are derived from the simple model of Eq. 2.5.  The 

equations display the different products of the reaction, which occur when the 

equivalence ratio is fuel lean and when the equivalence ratio is fuel rich (i.e., #>1%. 

For # lean or stoichiometric: 
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For #'rich or stoichiometric: 

The conventional CI combustion process can be further explained by Figure 2.3, 

in which the rate of heat release from a directly injected diesel fuel is examined vs. crank 

angle.  The diesel combustion process can be broken up into four different phases: 

ignition delay period, premixed combustion phase, mixing-controlled combustion phase, 

and the late combustion phase.  The ignition delay period begins at the start of injection 

(SOI). During the ignition delay period, the rate of heat release drops below zero due to 

the fuel absorbing heat while vaporizing [1].   Next is the premixed combustion phase 

where a rapid rate of heat release occurs.  The portion of the fuel which has mixed with 

air forms a combustible mixture and ignites. After all of the premixed air-fuel charge is 

consumed, the mixing controlled combustion phase begins.   Here the combustion 

transitions from a premixed flame to diffusion flame. The rate of combustion is 

controlled by the fuel vaporization and mixing, in contrast to the fast burn of the kinetics-

driven premixed flame.   During the mixing-controlled combustion phase, the end of 

injection (EOI) occurs.  In the late combustion phase, unburned fuel seeks oxygen as it is 

turbulently mixing throughout the cylinder [5].  

2222
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Figure 2.3 indicates that, in conventional diesel operation, the majority of the heat 

release occurs during the mixing-controlled combustion phase and thus most emissions 

will be created in the mixing controlled phase.  Dec furthered the understanding of the 

mixing-control combustion phase, in a sequence of laser diagnostic studies [7].  Dec 

developed a generalized explanation for the behavior of the combusting diesel jet.  He 

described the structure of the diffusion flame, indicating the layers by equivalence ratio 

and concentration of soot which varies throughout the combusting diesel jet.  

 Westbrook later added detail to the generalized depiction of the diesel spray 

flame, Figure 2.4, to include approximate temperatures and indicated the regions in 

which NOX, CO2, H2O CO and UHC are produced [8]. This generalized description of 

 

Figure 2.3:   Conventional DI diesel rate of heat release vs. crank angle of the major 
phases of the diesel combustions process [5]. 
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the diesel spray flames provides an excellent framework to explain the experimental 

observation of the diesel combustion process. The cold fuel enters the cylinder where it is 

vaporized by the hot compressed air.  The fuel and air mix reach a combustible 

equivalence ratio at ~4 and reach autoignition at ~650K [9]. Temperature builds as 

equivalence ratio drops and oxidation increases.  The inner region of the jet indicates 

incomplete combustion due to lack of oxygen, and the formation of soot precursors. The 

outer layers of the jet have near-stoichiometric equivalence ratios and generate high 

combustion temperatures as a consequence. The emissions generated in the diffusion 

flame, seen in Figure 2.4 are undesired products of incomplete combustion, and other 

pollutant formation pathways. 
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2.2 Nitrogen Oxide Emissions 

Oxides of nitrogen, known as NOX, are of concern due to their health and 

environmental effects.  NOX is a blanket term which refers to nitric oxide (NO) and 

nitrogen dioxide (NO2). 95% of engine emitted NOX is NO [5].  In the atmosphere, NO 

oxidizes into NO2.   Unburned hydrocarbons and sunlight increase the rate of oxidation of 

 

Figure 2.4: A model of CI diesel jet generated from laser diagnostic testing [8]. 
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NO into NO2.  NO2 is poisonous to the respiratory system causing both lung infection and 

respiratory allergies. NO2 is toxic in levels greater then 0.05 ppm. [10] 

NO2 is also harmful to the environment.  NO2 affects the photochemistry of both 

the troposphere and stratosphere. Photochemical smog is formed in high traffic areas. 

NOX mixes with OH* and HO2 radicals to form HNO2 which forms acid rain [10].  

NO usually accounts for the majority of the NOX produced from IC engines. NO 

can be formed by three different mechanisms which are the thermal or Zeldovich 

mechanism, the Fenimore or prompt mechanism, and the N2O intermediate mechanism. 

[3]  The Zeldovich mechanism produces the majority of NO in diesel engines.  It occurs 

due to high combustion temperatures. The extended Zeldovich mechanism is given as: 

 

 

Equation 2.9 is endothermic and has activation energy of +75.0 kcal. 

Equation 2.10 is exothermic and has an activation enrgy of +31.8 kcal. Equation 2.11 is 

exothermic and has an activation energy of +49.4 kcal.    

NOX is formed in regions of the flame where there is enough energy for nitrogen 

to oxidize.  NOX formation is thus governed by temperature and the availability of 

oxygen.  Unfortunately, diesel engines operate under fuel lean conditions and produce 

high temperatures from diffusion flame combustion.  

NNONO ()*,( 2  2.9

ONOON ()*,( 2  2.10

HNOOHN ()*,(  2.11
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2.3 Particulate Matter Emissions 

PM along with NOX are the most problematic diesel emissions. Particulate matter 

(PM) is of concern due to its effects on health.  PM that has a diameter of 0.10-m can 

permeate through the lungs and cause numerous health problems. PM causes cancer, 

autoimmune disorders, alteration in blood coagulability and increased cardiovascular 

disorders [11]. 

 PM is made of two main components: a solid carbon fraction, or soot, and a 

soluble organic fraction (SOF).  Lubrication oils and water bound sulfates compose 

minor contributions to the total PM [12]. Figure 2.5  depicts the general layout of the 

components of PM.  

 

Figure 2.5:  Schematic of Diesel Particles and Vapor Phase Compounds, redrawn by Hess 
[12]. 
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 The organic fraction is made of unburned hydrocarbons that are absorbed by the 

soot or condense onto the soot along with lube oil and sulfates. Sulfates, however, are 

less of a concern with the recent mandate towards low sulfur fuels.   Soot is produced in 

the locally fuel rich zones of a flame.  The production of soot is a competition between 

formation and oxidation. Total particulate matter is a product of an incomplete 

combustion path. The PM formation path is a complex process in which the following 

steps are generally accepted: first aromatic ring (soot growth), polycyclic aromatic 

hydrocarbons growth (growth due to SOF), particle nucleation, and particle growth 

(growth due to SOF, lube oils and sulfates) [12]. 

 In a recent review paper, Tree and Svensson discussed the current understanding 

of the soot formation process, which can be broken up into 6 steps: pyrolysis, nucleation, 

coalescence, surface growth, agglomeration and oxidation.  In this process, liquid or 

vapor phase hydro-carbons form solid soot particles [13].   

 Oxidation of carbon can occur during any of the 5 formation steps, in that, once a 

carbon atom is partially oxidized, it will no longer be able to form soot.  The pyrolysis 

step forms soot precursors known as polycyclic aromatic hydrocarbons (PAH), via a 

competition between fuel pyrolysis and oxidation of fuel, which both occur at high 

temperatures.   Because of this competition, a diffusion flame will produce more soot 

than a premixed flame in which oxygen is readily available to mix with the fuel.   

 In the nucleation step, particles form from gas phase reactants. In this process, the 

precursor aromatic rings grow in the presence of acetylene to develop into particle nuclei.  

Surface growth is the process in which the nuclei soot particles gain mass by absorbing 

gaseous hydrocarbons.  The size to which the soot particles grow is dependent on the 

344



15 

 

residence time of the particles.  The final step of soot formation involves the 

agglomeration of the spherical soot particle. In this process the primary particles formed 

during surface growth combine together for form chains of particles [13].  

 

 New regulations for diesel engine emissions have driven a shift in focus to 

advanced combustion modes and use of alternative fuels.  The emission restrictions on 

NOX and PM have exponentially increased since the 1970’s.   Figure 2.7 show the EPA 

heavy duty highway engine emissions standard from the 1970’s to present.  

 

 

 

 

Figure 2.6: Soot formation process from gas phase to solid agglomerated particles [13]. 
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2.4 Carbon Monoxide Emissions 

 Carbon monoxide (CO) is of concern because it is poisonous to humans. CO 

enters the blood stream via the lungs through respiration. In the blood stream CO forms 

carboxyhemoglobin with the hemoglobin in the blood. The presence of 

 

Figure 2.7: EPA heavy duty on-highway engine emissions standards [14]. 
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carboxyhemoglobin reduces the amount of oxygen available in the blood resulting in 

hypoxia and at high levels can cause death [15].  

 CO is directly linked to the air-fuel ratio. It is usually generated when there is a 

lack of oxygen.  Diesel engines operate under a globally lean stoichiometry; however, 

there are still locally rich regions in the diffusion flame. The principal formation path of 

CO is given by Eq. 2.12, where R is the hydrocarbon radical [5].  

 CO emissions, like PM, are a result of a competition between formation and 

oxidation.  However, the oxidation of CO has a slower reaction; the formation will win 

out under rich charge conditions. The oxidation of CO is given in Eq. 2.13.  

 In addition, Dec and Sjoberg have shown that CO emissions at low loads increase 

as the equivalence ratio is lowered to between 0.1 to 0.12 [16].  This is logical since 

incomplete combustion occurs when the air-fuel charge is overly lean as well as overly 

rich.  

2.5 Carbon Dioxide Emissions 

Carbon dioxide (CO2) is of concern because it is a green house gas. However, it is 

also a direct product of hydrocarbon fuel combustion [5].   Rather then a pollutant 

emission due to incomplete combustion, CO2 is a representation of fuel conversion 

CORCORCHORORRH )*))*))*))*))*)
2

 2.12

HCOOHCO ()*,( 2  2.13
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efficiency when viewed on a brake specific basis (per unit of net energy output) and 

represent the most desired final products, along with H2O, from hydrocarbon combustion.  

2.6 Unburned Hydrocarbon Emissions 

 Unburned hydrocarbon (HC) emissions are of concern because of their effect on 

health and the environment.  Recall that some HC emissions contributed to the organic 

fraction of PM and are carcinogenic when absorbed by the body. HC emissions are 

broken into two categories, methane (CH4) and non-methane hydrocarbons (NMHC). 

CH4 has 21 times the greenhouse gas potential of CO2 [17].  The NMHC are very reactive 

in the atmosphere and produce photochemical smog, which is an irritant to the respiratory 

system. Table 2.1 lists the reactivity of specific HCs [5]. 

Table 2.1: General Motors Reactivity Scale (0-100). Based on the NO2 formation rate for 
hydrocarbon relative to the NO2 formation rate for 2,3-dimethyl1-2-butene[5, 18]. 

Hydrocarbon Relative reactivity
C1-C4 paraffins 0
Acetylene
Benzene
C4 and higher molecular weight paraffins 2
Monoalkyl benzenes
Ortho- and para-dialkyl benzenes
Cyclic paraffins
Ethylene 5
Meta-dialkyl benzenes
Aldehydes
1-Olefins (except ethylene) 10
Diolefins
Tri- and tetraalkyl benzenes
Internally bonded olefins 30
Internally bonded olefins with substitution at the double bond 100
Cycloolefins  
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 HC emissions are due to incomplete combustion and occur from four main 

sources.  Fuel can disperse into regions of the cylinder where it is so locally fuel lean 

and/or cool that combustion cannot occur. A charge can be overly fuel rich and thus will 

not combust.  Fuel can be trapped in the fuel injector and come out when it is too late to 

combust. Finally the fuel spray can penetrate to the cylinder wall where it penetrates 

crevices and mixes with the lubricating oil.  On the cylinder wall, combustion of the fuel 

can be quenched by the cool temperature of the cylinder wall [3, 5].  

2.7 Hydrogen 

 Hydrogen is of interest as a transportation fuel because it is a promising 

replacement to fossil hydrocarbons. The burning of hydrogen does not produce any 

carbon emissions, depending upon the source of the hydrogen. The zero emission 

combustion potential of hydrogen is displayed in, for stoichiometric combustion of 

hydrogen [5].  

Unfortunately, pure diatomic hydrogen (H2) is not found in nature. Rather energy 

much be consumed to generate diatomic hydrogen out of hydrogen containing molecules.  

For this reason hydrogen is often referred to as an energy carrier rather than a fuel [19]. 

Hydrogen can be produced by either reforming a hydrocarbon-based fuel or 

electrolysis. Methane, CH4, is the primary hydrocarbon fuel for reforming due to its high 

hydrogen content.   Steam reforming of CH4 accomplished by the reaction in Eq. 2.15. 

22222 88.1)773.3(
2
1 NOHNOH ()*)((  2.14
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The water gas shift reaction, Eq. 2.16, is then used to produce CO2 and hydrogen from the 

product CO [20].  

  

 Electrolysis, Eq. 2.17, produces hydrogen from electricity and water [21].   

Hydrogen production from steam methane reforming and electrolysis are not 

emission free.  CO2 is produced during methane reforming. The electricity used in 

electrolysis must be generated, which produces emissions depending on the fuel source. 

 Chui and coworkers conducted a life cycle analysis study to compare the possible 

pathways to produce hydrogen, based on steam methane reforming and electrolysis [21].  

The 11 pathways to hydrogen production are given in Figure 2.8 and Figure 2.9.  The life 

cycle analysis showed electrolysis with hydroelectric power to be the preferred path to 

hydrogen production.  

224 3HCOOHCH ()*,(  2.15

222 HCOOHCO ()*,(  2.16
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Figure 2.8:  Fuel stages for energy and technology types for hydrogen production [21]. 
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2.8 Diesel Pilot Ignited Hydrogen Combustion 

Hydrogen has an autoignition temperature of 858K requiring an ignition source to 

combust in an IC engine [22].  Diesel fuel which has an autoignition temperature of 525K 

can be used as a pilot to ignite hydrogen.   The literature contains a body of work in 

which hydrogen was used in conjunction with diesel fuel to power CI engines.  This dual-

fuel combustion is often called diesel pilot-ignited hydrogen combustion.  Diesel pilot-

ignited hydrogen combustion at low quantities of hydrogen is beneficial since the diesel 

fuel is being replaced by hydrogen, which may stretch the supply of hydrocarbon fuels.  

 

Figure 2.9:  Fuel stages for energy and technology types for hydrogen production
-continued [21]. 
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There is a range of emissions results reported on diesel pilot hydrogen combustion. This 

literature must be examined critically.  The size, power output and rotational speed of the 

engine used in the studies skew these emission results.  Lower emissions are achievable 

at the cost of de-rating an engine, to the point of unusable road performance.    

Varde and Varde conducted some of the earliest work on hydrogen substitution 

[23].  The work was conducted on a 4.75 kW, single cylinder direct injection, naturally 

aspirated diesel engine. A pilot injection of diesel fuel was fixed at 22o BTDC and engine 

speed was fixed at 2400 RPM.  The hydrogen was fumigated into the air intake.  In this 

work, propane, natural gas and hydrogen were compared in “dual-fuel” combustion. The 

flows of the gases were reported by an H/C ratio, which included the diesel fuel.  In the 

case of hydrogen, 15% of the total fuel energy was used as the maximum flow rate. A 

reduction of smoke was reported when hydrogen was introduced at a full rated load.  A 

50% reduction of smoke was reported at part load when 15% of the total fuel energy was 

hydrogen. Increasing the hydrogen at part load past 15% of total fuel energy was shown 

to increase soot levels, due to insufficient oxygen. NOX was seen to increase with 

hydrogen substitution at both part and full load. An increase of 30% NOX was reported at 

full rated load with 15% of the total fuel energy being hydrogen.   HC levels were also 

seen to increase with increased flow rates of hydrogen at part and full load.  

Lambe and Watson conducted a study in which they optimized a CI engine for 

hydrogen combustion with a diesel pilot [22]. A Petter PH1W, 6kW open chamber, 

naturally aspirated, direct injection, diesel engine was used in the study.  A delayed port 

admission system was used to supply hydrogen. The system administered hydrogen via a 

secondary valve that allowed the flow of hydrogen into the cylinder when the intake 
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valve opened.  Under high loads, an atomized water jet was administered to prevent curve 

knock. Hydrogen comprised 65% to 95% of the fuel energy. To accomplish such high 

fuel substitution levels, a minimum pilot diesel fuel quantity was first found. At low 

loads, lower efficiency was achieved running in a dual-fuel mode compared to running 

with diesel alone. At higher loads of 75% of maximum output the dual-fuel operation was 

more efficient than the diesel-only operation. Exhaust emissions were taken at 1000 RPM 

and 1500 RPM at unclear quantities of hydrogen (somewhere between 65% and 95%) 

and were compared to diesel-only combustion.  At 1000 RPM and full load, smoke was 

reported to be reduced by 82% with dual-fuel combustion. At 1500 RPM and full load, 

smoke was reported to be reduced by 20%.  NOX tended to increase at 1000 RPM under 

light loads, with dual-fuel combustion. At 1500 RPM NOX increased under dual-fuel 

combustion. CO2 emissions decreased for all loads under dual-fuel combustion. At 1000 

RPM, CO2 decreased by 20%.  At 1500 RPM, CO2 decreased by 85%. For both speeds, 

CO emissions decreased overall. HC emissions increased for both speeds. Nitrogen 

oxides were reduced by up to 70% in some cases.  It was observed that combustion under 

dual-fuel operation is controlled by flame propagation rather then autoignition.  

Tomita and coworkers investigated diesel and hydrogen dual-fuel combustion 

using a four-stroke, single cylinder, diesel engine with a single cylinder [24].  Injection 

timing was altered over a wide range of crank angles from 67.7 BTDC to 3.2 ATDC.  

Testing was conducted at 1000 RPM. The hydrogen as aspirated into the air intake. A 

pilot injection of diesel was used to ignite the hydrogen. Hydrogen flow rate was 

quantified in two ways, the total equivalence ratio and as the ratio of the hydrogen 

equivalence ratio over the total equivalence ratio.  The equivalence ratio of diesel-only 
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and dual-fuel were made equal for comparison.  Smoke was seen to decrease to near zero 

levels at all injection timings and at all equivalence ratios of hydrogen. NOX emissions 

dropped to zero at injection timings of 40o BTDC and earlier for all equivalence ratios of 

hydrogen. However, at timings later then 40o BTDC, NOX emissions increased over 

diesel-only combustion. HC emissions made only modest decrease with increasing 

hydrogen.  CO2 emissions decreased with increasing levels of hydrogen. Thermal 

efficiency was found to increase significantly at injection timings of 30o BTDC and 

earlier. 

Kumar and Nagalingam investigated the performance increase of hydrogen on 

vegetable oil in a CI engine [25].  In this work, hydrogen-diesel combustion was also 

studied for comparison.  The study was conducted on a Kirloscar AV1, single cylinder, 

four-stroke CI engine with a power rating of 3.7kW at 1500 RPM. The tests were 

conducted at 1500 RPM at 80% and 100% of maximum output.  The diesel fuel was 

injected at 27 BTDC.   The hydrogen was inducted into the air intake.  Hydrogen flow 

rate was reported as “hydrogen mass share” given in equation Eq. 2.18.  

The hydrogen mass share used in their testing ranged between 0% and 30%, with 5% 

reported to be the optimum hydrogen mass share.  Justification for this was unclear.   

Brake thermal efficiency increased by 1.7% at 100% of maximum output. At 40% 

maximum output, 5% hydrogen mass share caused a 1.5% reduction of brake thermal 

efficiency. The lower efficiency at 40% of maximum output was reported to be due to 

insufficient diesel fuel to ignite the hydrogen. The smoke reduced from 3.9 BSU (Bosch 

Hydrogen mass share
fH

H
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m
(

+
2

2  2.18
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smoke unit) to 2.7 BSU at 5% mass share and at 100% of maximum output.  At 40% of 

maximum output, smoke dropped from 1.5 BSU to 1 BSU at 5% of hydrogen mass share. 

HC emissions reduced from 100 ppm to 70 ppm at 100% of maximum output at 5% 

hydrogen mass share. At 40% of maximum output, HC emissions decreased from 30 ppm 

to ~25 ppm, at 5% hydrogen mass share. CO emissions reduced from 20% to 0.14% at 

100% of maximum output and 5% hydrogen mass share. At 40% of maximum output, 

CO emissions decreased from 0.9% to 0.6 %, at 5% hydrogen mass share. NO emissions 

increased from ~775 ppm to ~895% at 100% of maximum output and 5% hydrogen mass 

share. At 40% of maximum output, NO showed no significant variation at 5% hydrogen 

mass share.  

 In a fundamental study, Lu and coworkers conducted spectral analysis and 

chemiluminescence imaging hydrogen addition to a HSDI engine under conventional and 

low-temperature combustion [26]. The work was conducted on a rapid compression 

machine (RCM) with optical access, which operated at ~1000 RPM.  Hydrogen was 

supplied to the cylinder along with the air. Hydrogen was added at a rate of 0%, 5%, 10% 

and 15% of the energy released. The LTC mode was based on 25% and 50% EGR and 

late injection timing.  They reported that under mixing-controlled diesel combustion, 

small amounts of hydrogen had no significant effects on soot temperature, soot 

concentration or peak pressure. Under LTC, 15% hydrogen fuel energy led to increased 

soot concentration and soot temperature.  The study also examined the OH radical to 

determine if it would burn part of the soot formed during early combustion.  At 10% 

energy release from hydrogen, in LTC condition, the OH radical was found to further 

reduce soot concentration due to long residence timings.  
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 The diesel pilot ignited hydrogen combustion literature varies in emissions results 

from study to study.  Given the literature, diesel pilot ignited hydrogen combustion 

appears to be a promising method to reduce petroleum fuel consumption while achieving 

emissions reduction. However, these results must be qualified on a full size automotive 

diesel engine to validate the benefits associated with diesel pilot-ignited hydrogen 

combustion. 

 The findings in the published literature on hydrogen assisted diesel combustion 

are qualitatively presented in Table 2.2.  The table indicates inconsistent results from the 

aspiration of hydrogen into a diesel engine, though it should be noted that the published 

studies consisted of a broad variation in testing conditions and parameters.  A definitive 

study is thus necessary to clarify these inconsistent results. 

Table 2.2: Qualitative results given in the literature on hydrogen assisted diesel
combustion. Where + indicates an increase and - indicates a decrease in the given 
emission species or parameter. 

  
Varde, 1984 

[23] 
Lambe, 1993 

[22] 
Tomita, 2001 

[24]  
Kumar, 2003 

[27] 
Lu, 2004 

[26] 

Nox + - - + + 
Soot - - - - + 
HC - + - -   
CO   - - -   
CO2   - -     

Brake thermal 
efficiency     - +   

Ignition delay      + +   
Peak cylinder 

pressure        +    
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2.9 Engine Gas Recirculation 

 Engine gas recirculation (EGR) is a technique used to reduce NOX emissions in 

compression ignition engines.  EGR is accomplished by looping exhaust gas back into the 

intake manifold. The EGR level is controlled by a valve in the loop before the exhaust 

gas enters the turbocharger. The pressure differential between the exhaust and intake will 

limit the percent of EGR possible [28].  

 Engine gas recirculation reduces NOX emissions in two ways. CO2 a major 

product of combustion and has a high specific heat. The high CO2 content of EGR gas 

acts as a heat sink to reduce adiabatic flame temperature and thus reduce NOX. Secondly, 

circulation of EGR into the air intake dilutes the O2 content of air.  This reduces 

combustion temperatures and provides less O2 to combine with N2 to form NOX.  

However, the reduction in O2 content, moreover, the shift of air-fuel charge to a fuel rich 

ratio, increases PM production [5, 28, 29].   

 Exhaust gas recirculation percentage (EGR%) can be quantified based on the 

volume percent of CO2 in the ambient air intake air, and exhaust, as given in  

Eq. 2.19[29].  

  

 EGR decreases engine efficiency.  Pump losses increase as EGR rates increase.  

The indicated work decreases as incomplete combustion increases, in the form of 

increased CO and HC emissions. Also, indicated work suffers from the reduced cylinder 
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temperatures. EGR is cooled using engine coolant to recover and prevent the loss of 

volumetric efficiency caused by fumigating the intake charge with excessively hot gases. 

However, cooling the EGR increases the losses from heat rejection [30].   

 Simulated EGR is also used in laboratory settings when large quantities of EGR 

rates are required.   Bottled CO2 typically is used to simulate EGR. However, results 

achieved from simulated EGR are somewhat skewed due to the lack of water vapor and 

combustible species present in actual EGR gas. Studies have been conducted to compare 

actual EGR to simulated EGR [28].  

 Large rates of EGR increase cylinder to cylinder variation [31].  Under high EGR 

conditions, individual cylinders do not receive uniform charges of EGR. This is due to 

the short mixing length between the point where the EGR meets the intake and a given 

cylinder. This will result in varying emissions from cylinder to cylinder [32]. 

2.10 Homogeneous Charge Compression Ignition 

Homogeneous charge compression ignition (HCCI) combustion is an advanced 

combustion mode of interest due to its potential for low NOX and PM emissions while 

achieving high efficiency.   HCCI utilizes advantages associated with spark ignition 

engines and compression ignition engines [33]  

HCCI combines a homogeneous charge with a compression ignition combustion 

process.  The homogenous mixture of HCCI is fuel lean and/or dilute. Combustion of the 

charge occurs globally without a propagating flame, resulting in combustion with local 

hotspots [34].  Fuel lean mixtures produce less PM due to the high rate of oxidization 
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occurring in the locally lean charges.  The locally lower temperatures of HCCI produce 

less NOX. In contrast, the stratified diffusion flame, conventionally used in compression 

ignition engines, has layers of fuel rich zones where PM is created. Also, at the periphery 

of these fuel rich zones pockets of high temperature are present, which generate thermal 

NOX.    

 The stated efficiency of HCCI is higher than that of SI engines but equivalent to 

CI engines. The high efficiency derives from the reduction of pumping losses which are 

present when the intake air is throttled, such as in the case of stoichiometric SI engines 

[33]  

 Some obstacles still remain before HCCI will be realized in production 

applications.  The largest problem facing HCCI is the requirement for an ignition control 

system with varying speeds and loads. The ignition timing is based on fueling rate and in- 

cylinder temperature. This is difficult to control in a transient state with varying power 

demands.   Another challenge for HCCI is its lack of ability to operate in high load. At 

high loads HCCI combustion occurs rapidly causing increased levels of NOX, noise and 

possibly damage to the mechanical components of the engine. HCCI also does not work 

properly under cold start operation. The cold cylinder walls absorb the heat of 

compression preventing an HCCI engine from firing. HCCI produces excess amounts of 

CO and HC, which is an issue because catalyst technology does not work properly at low 

exhaust temperatures [35]. 
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2.11 Partially-premixed Charge Compression Ignition 

 HCCI can be approximated in a CI engine by early fuel injection combined with 

high EGR.  The acronym PCCI has been used in the literature on advanced combustion 

with multiple meanings.  Neely and coworkers used PCCI to refer to premixed controlled 

compression ignition combustion, having an increased, advanced pilot injection, and a 

retarded main injection [36].  Kanda [37] and Araki[38] refer to PCCI as premixed 

charge compression ignition, in which diesel fuel is injected early. Sluder and coworkers 

refer to PCCI as partially-premixed charge compression ignition [39].  No matter what 

the PCCI acronym stands for, PCCI commonly refers to an advanced combustion process 

that allows for a large premixed burn.  In PCCI, fuel is injected early into the cylinder, 

during which an ignition delay occurs until cylinder conditions are right for autoignition.  

During the ignition delay atomized diesel fuel mixes with air, creating a locally fuel lean 

charge. If injection of diesel fuel continues past the point of autoignition, the burn will 

transition from a premixed burn to a diffusion burn. 

  The contrast between HCCI and PCCI should be noted. The air-fuel charge in 

HCCI is homogeneous when it enters the cylinder.  In PCCI, advanced injection of fuel 

leads to an extended premix-combustion phase. PCCI can be seen as an intermediate step 

between conventional diesel combustion and HCCI.  The charge in PCCI is not mixed as 

well, thus there will be more hot spots. Also, since PCCI injects fuel via the diesel fuel 

injector, the long ignition delay may result in diesel fuel penetration to the cylinder walls, 

resulting in incomplete combustion.  Like HCCI, PCCI suffers from increased HC and 

CO emissions related to the overly lean combustion conditions.  However, PCCI permits 
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a practical route to approximate HCCI, because injection timing and EGR level can be 

used in concert to control ignition timing. 

2.12 Low Temperature Combustion 

 Low temperature combustion (LTC) is a generic term that refers to an engine 

condition which operates below that required for the formation of NOX  ("<2.5, 2000K 

<T) and/or PM (">~2.5, 1700K <T < 2400K) [40]. Combustion temperature can be 

lowered by introducing EGR or by altering the combustion process to be locally fuel 

lean. These techniques can be used in tandem.  EGR is used as a thermodynamic “dead 

weight” to reduce the rate of heat release in the cylinder. EGR is introduced into the 

cylinder by displacing the intake air.  Thus, O2 is reduced, which successfully reduces 

NOX.  However, PM emissions increase due to the reduction in oxygen and the resulting 

inhibition of soot oxidation.  HCCI-like conditions are coupled with EGR to reduce PM 

emissions. A well mixed air-fuel charge is locally fuel lean.  A fuel lean charge will 

produce less heat and have more O2 locally available to oxidize PM or prevent formation 

of PM.   

 The concept of LTC is best presented by a 3D-CFD model originally developed 

by Akihama and coworkers [40].  This map plots local equivalence ratio verses local 

flame temperature.  The map provides insight into the NOX-PM trade off which is at the 

heart of diesel engine emissions. Figure 2.10 displays an updated version of Akihama and 

coworkers’ model. 
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 LTC has been heavily explored with the recent onset of strict diesel emissions 

regulation.   Here the most pertinent variations of LTC are discussed.  

2.13 Smokeless Locally Rich Diesel Combustion 

 Smokeless locally rich diesel combustion (SRDC) was developed by Toyota [41].  

The mode is entered by introducing extremely large amounts of cooled EGR (~60%).  

This lowers the air-fuel ratio to stoichiometric levels (~20 A/F ratio). However, the EGR 

decreases the local combustion temperature below the PM formation temperature. [40] 

[42]  The concept of SRDC emissions reduction is summarized in Figure 2.11.  

 

 
Figure 2.10: 3D-CFD model of local equivalence ratio vs. local temperature [36]. 
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2.14 Modulated Kinetics 

 Modulated kinetics (MK) was developed by Nissan [27]. The MK condition is 

achieved by using single pulse fuel injection, retarding fuel injection after TDC, utilizing 

moderate levels of EGR (~30%) and increasing swirl [43].  The results of these 

modifications are increased ignition delay causing increased mixing of fuel and air.  The 

concept of MK’s emissions reductions is summarized in Figure 2.12.  

 

 
Figure 2.11:   Smokeless Locally Rich Diesel Combustion (SRDC) Combustion [42] 
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 Modulated kinetics is stated to reduce NOX by the formerly mentioned methods 

[42].  EGR reduces the O2 content and slows the heat release rate.  Smoke or PM will 

increase with decreased levels of O2.   PM is reduced via the premixed charge coupled 

with retarded injection timing and low temperatures to inhibit PM formation.  MK is 

reported to produce increased levels of HC emission, SOF emissions and increased fuel 

consumption which are associated with HCCI-like modes. To combat these increases in 

some emissions, MK utilizes swirl which is augmented by piston configuration and fuel 

injection pressure [42].   

 Singh and coworkers conducted a study in which SRDC and MK were compared 

on a single cylinder high speed direct injection (HSDI) turbocharged engine. The study 

found that both SRDC and MK did reduce NOX and PM.  However significant 

disadvantages offset the emission reductions.  The MK mode neared the misfiring limit of 

the engine.  HC emission and fuel consumption were found to be high due to late 

 

 
Figure 2.12:  Schema of Modulated Kinetics (MK) Combustion[27]. 
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combustion.  The main disadvantage of SRDC is the high EGR requirement, which 

resulted in a fuel economy penalty. The study also found that increases in swirl and 

injection pressure could be used to further reduce NOX and PM.  However these 

decreases would be offset by a penalty in fuel consumption [42].   

2.15 High Efficiency Clean Combustion 

 High efficiency clean combustion (HECC) was developed at Oak Ridge National 

Laboratory.  HECC, formally known as Efficient-LTC, is accomplished by a combination 

of single pulse injection, EGR (50%), early injection timing, and increased injection 

pressure. The EGR reduces NOX emissions and increases PM emissions. The early 

injection allows time for the diesel fuel to mix with air before combustion.  Thus, an 

extended premixed combustion phase occurs, accompanied by a shorted mixing-

controlled combustion phase. The premixed air and fuel are locally fuel lean, thus 

decreasing PM. As the premixed air-fuel charge is consumed, the combustion transitions 

to a diffusion burn.  Increasing the injection pressure decreases the injection duration, 

which causes more fuel to be premixed and burned during the premixed combustion 

phase.   The HECC mode provides a decrease in NOX emissions and PM emissions while 

maintaining or even increasing fuel efficiency. However, the HECC mode results in 

increased  HC and CO emissions, which is common with HCCI-like modes [39, 44-49].  

 In a recent study Wagner, Sluder and coworkers, who developed the HECC mode 

at Oak Ridge National Laboratory, have shown the HECC mode to be operable at 1500 

RPM at 1.0 bar IMEP, 1500 RPM at 2.6 bar IMEP, 2000 RPM at 2.0 bar  IMEP and 2300 
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RPM and 4.2 bar IMEP.  The tests were conducted on a modified Mercedes 1.7-liter, 

direct-inject diesel engine with cooled EGR.  In all four of the engine conditions, NOX 

was reduced by more then 80% compared to the baseline. PM decreased between 30% -

50% and was even further decreased from 85% -100% when the fuel injector nozzles 

were replaced to further increase atomization.  HC levels doubled at the lowest speed and 

only slightly increased at the highest speed.  The CO emissions double in three of the 

four conditions. The fuel consumption remained the same as the baseline for all four 

conditions.  Figure 2.13 is a concept map that summarizes the techniques used to achieve 

the SRDC, MK and HECC LTC modes.   

 

Figure 2.13:  Concept map of various LTC modes. 
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2.16 Research Objective Identified via the Literature Review 

 The literature to date on the topics of hydrogen assisted diesel combustion and 

HECC contains gaps which require further experimental research.  The gaps in the 

literature aimed to be filled by the work in thesis are as follows:  

  

! To perform hydrogen assisted diesel combustion on a light-duty production diesel 

engine under laboratory conditions.  

! To verify that the aspiration of hydrogen into a diesel engine will increase the pre-

mixed combustion phase, decreasing NOX and PM emissions. 

! To verify  that small quantities of aspirated hydrogen will have little effect on 

engine performance and emissions  

! To demonstrate that the HECC mode can be achieved using a production 

DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection 

light-duty diesel engine.  

! To demonstrate that while operating in the HECC mode, the addition of hydrogen 

to the combustion chamber will smooth-out the combustion process, quantified by 

the coefficient of variance (COV) of the indicated mean effective pressure 

(IMEP) and further reduce NOX and PM emissions. 
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Chapter 3 
 

Experimental Setup 

3.1 Engine Test Stand 

 A heavily instrumented DDC/VM Motori 2.5L, 4-cylinder, turbocharged, 

common rail, direct injection light-duty diesel engine was used for steady-state testing.  

Engine specifications are given in Table 3.1 and the general engine layout is given in 

Figure 3.1.  

 

  

 

Table 3.1: DDC 2.5L Engine Specification.  

Engine DDC 2.5L TD DI-4V Automotive Diesel Engine
Displacement 2.5L
Bore 92 mm
Stroke 94 mm
Compression Ratio 17.5
Connecting Rod Length 159 mm
Rated Power 103KW@4000 RPM
Peak Torque 340Nm@1800 RPM
Injection System Bosch electronically controlled common-rail injection system
Valve Train 4 valves/cylinder
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A 250HP Eaton eddy current water-cooled dynamometer was coupled to the 2.5L 

DDC engine to generate load.  The engine and dynamometer were controlled by a 

Digalog Testmate control unit.  

3.2 Data Acquisition 

 Time-based data acquisition was managed using a custom programmed National 

Instruments LabView VI.   Analog signals from pressure transducers, thermocouples, 

mass flow meters, and emissions data were read by a series of National Instruments 

FieldPoint modules, including a FP-2015, a FP-AO-210, a FP-DO-403, a FP-AI-102, a 

FP-AI-112 and three FP-TC-120 modules.  The data collected by the FieldPoint modules 

were saved every 10 seconds during 15 minutes of sampling per test.  

 

Figure 3.1:  DDC 2.5L common rail diesel engine set up [1]. 
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3.3 Electronic Control Unit Modification 

 The electronic control unit (ECU) is the computer that controls engine operation. 

An unlocked ECU was used to modify and control main injection and pilot injection 

timings, as well as, EGR valve position, and fuel rail pressure. The unlocked ECU was 

connected to an ETAS MAC 2 unit via an ETK connection. The MAC 2 unit was 

connected to a PC running ETAS INCA v5.0 software. INCA managed the ECU 

modifications in real-time.  

3.4 EGR Operation 

 The DDC 2.5L engine regulates EGR rates using an ECU map based on engine 

speed and injection volume.  The ECU map dictates the flow rate by varying the 

amplitude of the signal sent to a proportional pneumatic valve.  The stock DDC 2.5L 

engine then introduces EGR to the intake manifold via a Y-pipe.  The Y-pipe was 

modified to include a stainless steel tube which extended into the engine’s intake 

manifold, as given in Figure 3.2. CO2 emissions were sampled from this tube, thus 

providing an accurate indication of CO2 levels in the intake manifold charge.   
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 It was necessary to aspirate simulated EGR into the engine’s air intake to achieve 

a well-mixed and high concentration of EGR charge (~50%).   Bone-dry CO2 with a 

purity of 99.8% was used as simulated EGR.  The flow rate of the simulated EGR was 

monitored and regulated using an array of Matheson model 605 rotameters.   The 

simulated EGR was aspirated after the charge air cooler, as seen in Figure 3.3.  

 

 

Figure 3.2: Instrumented air intake/EGR Y-pipe.  
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The simulated EGR was dispersed and mixed with the boosted air using a custom 

built mixing manifold.  The manifold consisted of four porous metal (Hastelloy) filters, 

customarily used as spargers, placed on the radial of the manifold. Two of the porous 

metal filters were used to inject simulated EGR. The other two porous metal filters were 

used to inject hydrogen gas. The manifold is seen in Figure 3.4.  
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Figure 3.3: DDC 2.5L EGR/H2 flow diagram.  
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3.5 Hydrogen Flow Rate Monitoring and Control 

Hydrogen was supplied to the engine from a Structural Composites Industries 

5000 psi 87.99L tank, which was located outdoors, adjacent to the testing facility.   A 

diagram of the hydrogen delivery system is given in Figure 3.5.   While the system was 

designed to withstand 2000 psi of hydrogen, only a 150 psi flow was necessary to achieve 

the required flow demands.  The hydrogen delivery system was designed with redundant 

safety features, such as two pressure relief valves, and indoor and outdoor iTrans Fixed 

Point Monitors for hydrogen leak detection. This system also included a pneumatic tank 

 

 
Figure 3.4: Custom intake air manifold aspiration system.  
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shut-off valve, which would automatically close in the case of engine failure.         

Stainless steel (304) tubing and fittings were used to construct the hydrogen delivery 

system, which featured Swagelok fittings and valves.  To prevent indoor leaks, weld 

connections were implemented when possible.   Indoors, a fume hood was placed above 

the mechanical connections of the system to collect any leaking hydrogen.  

 

 A regulator and a needle valve were used to control the flow rate of hydrogen to 

the engine.   Since the test plan called for a wide range of hydrogen flow rates, two mass 

flow meters of different ranges, were used to monitor the hydrogen. While a Sierra 
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Instruments Toptrak model 820 mass flow meter monitored flows between 0-50slpm,  a 

Teledyne Hastings Nall-P mass flow meter monitored flows between 50-200 slpm.    The 

hydrogen was aspirated into the engine using the same method described for simulated 

EGR aspiration in Figure 3.3 and Figure 3.4. 

3.6 Diesel Fuel Flow Rate 

 Diesel fuel consumption was measured using a Sartorius electronic microbalance.  

The custom LabView VI calculated diesel fuel consumption rates based on 100 

measurements of fuel tank mass, tracking the small change in mass over 60 seconds.  

3.7 Gaseous Emissions: AVL Combustion Emissions Bench II 

 An AVL Combustion Emissions Bench II was used to measure gaseous 

emissions. The bench was composed of six gas specific analyzers.  Hot exhaust gases 

were sampled from the engine’s exhaust pipe by head-line filters, and then fed through 

heated lines kept at a constant temperature of 190 /C.  NOX and NO were measured using 

an EcoPhysics chemiluminescence analyzer.   NO2 was assumed to be the value of NO 

subtracted from NOX.  Total hydrocarbons and methane were measured by using two 

separate ABB Flame Ionization detectors. CO and CO2 were measured by two separate 

Rosemount infrared analyzers, and O2 was measured by using a Rosemount paramagnetic 

analyzer. The hot exhaust sample going to the CO, CO2 and O2 analyzers was first chilled 

to reduce moisture. 
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3.8 Gaseous Emissions: GC 

 The hydrogen content of the exhaust gas was measured using a HP 6890 gas 

chromatograph (GC). The GC included a thermal conductivity detector (TCD) and a 

flame ionization detector (FID). Exhaust gas was supplied to the GC via a headline filter 

and heated sample line, kept at a constant 190oC.  A 10ft (for TCD) and a 36ft (for FID) 

HayeSep D packed stainless steel, 100/125 mesh, 1/8” diameter column were used to 

concurrently analyze on-line permanent gases, water, and hydrocarbons. A factory set 

analysis method was used to examine exhaust samples. Argon was used as the carrier gas 

to pass the exhaust gas through the system, and flowed at 30 mL per minute for 16 

minutes. The argon flow then ramped up to a rate of 60 mL per minute for 19 minutes. 

The GC initiated analysis at an oven temperature of -15 oC for 17 minutes, and increased 

at a rate of 30 oC per minute for 8 minutes. The GC then held to 255 oC for 10 minutes, 

with a total sampling time of 35 minutes.  

3.9 Particulate Matter Emissions: BG-1 

 Particulate matter was measured using a Sierra Instruments BG-1 Micro-Dilution 

test stand.  The samples were taken at a dilution ratio of 10, a total flow rate of 110 slpm 

and a sample flow rate of 10 slpm over 5 minutes. The particulate matter samples were 

collected on Pallflex 90mm Filters, Type EMFAB TX40HI20-WW. The filters were 

weighed on a Sartorius M5P electronic microbalance, before and after sampling. The 

scale was located in an environmental chamber set at 250C, with 45% relative humidity. 

The filters were placed in the environmental chamber 48 hours prior to mass analysis.  
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Five sample filters were taken per mode and the four sample fitters having the lowest 

standard deviation were averaged to represent the mass produced at a given mode.   

3.10 Particulate Matter Emissions: SMPS 

 A TSI 3936 Scanning Mobility Particle Sizer (SMPS) was used to analyze the 

size distribution of the particulate matter. The SMPS instrument included a TSI series 

3080 Electrostatic Classifier with a Differential Mobility Analyzer (DMA), a series 3776 

Condensation Particle Counter (CPC), and a series 3065 Thermal Denuder.  A PC 

running Aerosol Instrument Manager Software collected and managed the sampled data. 

 The BG-1 was used to draw and dilute samples from the exhaust. The BG-1 drew 

samples at a dilution ratio of 10, a total flow rate of 108.6 slpm and a sample flow rate of 

100 slpm.  The SMPS drew samples from the BG-1 at a rate of 1.4 slpm. The SMPS 

measurements were conducted using three different sample methods: passing the samples 

through the Thermal Denuder, passing the samples through the Thermal Denuder at 

300oC and having the samples by-passing the Thermal Denuder.  The sampling methods 

affected the content of the volatile hydrocarbon present on the particulate matter.   A 

large number of samples (~6) should have been taken on the SMPS to correct for and 

average out the inconsistent residence timing of the exhaust samples in the dilation 

chamber of the BG-1.  Unfortunately, due to the limited test time possible before the 

hydrogen tank emptied, only three SMPS data samples were taken during this study at 

each operating condition. 
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3.11 Cylinder Pressure Trace Analysis 

Pressure traces were measured using AVL GU12P pressure transducers, which 

replaced the glow plug in each of the four cylinders.   The pressure trace voltages from 

the pressure transducers were amplified by a set of Kistler type 5010 dual mode 

amplifiers. The amplified voltages were read by an AVL Indimodul 621data acquisition 

system.   Needle lift data were collected from a Wolff Controls Inc. Hall-effect needle lift 

sensor, which was placed on the injector of Cylinder 1. The needle lift signal was also 

collected by the Indimodul, which was triggered by a crank angle signal from an AVL 

365C angle encoder placed on the crankshaft.  The pressure traces and needle lift data 

were recorded at a resolution of 0.1 crank angle degrees, and were averaged over 200 

cycles.  The real-time Indimodual data were transferred to a PC, which ran AVL Indicom 

1.3 and Concerto 3.90 to calculate the apparent heat release rate.  

The apparent rate of heat release for each of the four cylinders was calculated 

from the volume and pressure trace data.  The calculation is a built-in feature of 

Indicom/Concerto and is based on cylinder pressure. The algorithm neglects losses and 

assumes a polytropic coefficient of 1.37 for diesel fuel. The apparent rate of heat release 

algorithm is given in Eq. 3.1 [50]. 

Where: 

n is the interval (0.1 degree) 

)]()([
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.
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2'is the polytropic coefficient (
v

p

c
c

+2  where cp is the temperature at a constant 

pressure and cv is the temperature at a constant volume of the fuel)  

P is the cylinder pressure 

V is the volume  

3.12 Test Plan 

 This thesis contains two different studies, which both utilized hydrogen assisted 

diesel combustion.  In the first study, hydrogen assisted diesel combustion was explored 

under four conventional steady-state operation modes, which are given in Table 3.2.  

 These four modes were chosen to provide a range of high and low loads at high 

and low speeds to examine the effect of hydrogen substitution on emissions and 

combustion behavior.  In this study, the maximum rate of aspirated hydrogen substitution 

at a given mode was discovered, as seen in Table 3.3. 

Table 3.2:  Test matrix for conventional hydrogen assisted diesel combustion on the basis
of fuel energy percent. 

3600 rpm (75% load)
3600 rpm (25% load)
1800 rpm (75% load)
1800 rpm (25% load)

0% H2 2.5% H2 7.5% H2 15% H2  
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 The second study examined the effect of hydrogen assisted diesel combustion on 

advanced combustion modes, given in the test matrix of Table 3.4.  In this study, it was 

necessary to first locate an engine specific “HECC” mode, which was defined as 

providing simultaneous a reduction of NOX and PM while maintaining or increasing fuel 

efficiency.  The criteria for the HECC mode were based on work by Wagner, Sluder and 

coworkers.  A HECC operation mode is entered at a single pulse injection by advancing 

injection timing, increasing rail pressure, and increasing EGR to ~50%. The definition of 

“LTC” operation mode was also based on Wagner, Sluder and coworkers’ work, i.e. a 

~50% EGR without any other modification from the Baseline mode at the same speed 

and load as the HECC mode.  The Baseline mode was defined as the same speed and load 

as the HECC mode without any modifications.  

Table 3.3:  Test matrix for conventional combustion modes with hydrogen substitution on
the basis of fuel energy percent, in which the maximum % hydrogen limit was found. 
1800 rpm (75% load)

0% H2 2.5% H2 7.5% H2 15% H2 25% H2 30% H2 35% H2 ...% H2

 

Table 3.4:  Test matrix for advanced combustion modes with hydrogen assisted diesel
combustion on the basis of fuel energy percent. 

~50% EGR "HECC"
~50% EGR "LTC"

Baseline
0% H2 2.5% H2 7.5% H2 15% H2  
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Chapter 4 
 

Discussion and Results of Conventional Combustion Modes with Hydrogen 
Substitution 

4.1 Introduction 

In this section the results of experimentation on hydrogen substitution of 

conventional diesel combustion modes are discussed. The hydrogen for diesel 

substitution rate was defined on the percentage energy basis. In an exploratory search, the 

maximum possible rate of hydrogen substitution was found for a given mode.  For the 

1800 rpm at 75% maximum output mode, 30% hydrogen substitution was found to be the 

operable limit.  At 35% the engine simply shut down from being choked.  There were no 

significant reductions in emission trends past the 15% substitution point, thus 15% 

hydrogen substitution was marked as the limit for rigorous testing.    

Hydrogen was substituted for diesel in a span up to 15% on a fuel energy basis, in 

four unique modes.  A level of 15% hydrogen substitution was also chosen because it is 

below the lower explosion limit of hydrogen in air, 4.1% volume, for all modes tested.  

Furthermore, increasing the hydrogen substitution past 15% would have required an 

excessive flow rate of hydrogen, rates nearing 200 slpm in high load modes.    

Results of each of the four baseline test modes are compared on the basis of 

parameter change.  The effect of hydrogen substitution is then reported and explained.  

Hydrogen substitution caused only modest changes in emissions.  Many of the effects on 
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emissions were mode dependent.   Though hydrogen caused a modest reduction in 

emissions, hydrogen can be substituted for diesel with out penalty.   

4.2 Mode Parameters 

Table 4.1 lists the parameters of the modes explored in this study. These 

parameters are for the baseline mode (0% hydrogen on the fuel energy basis).  Hydrogen 

substitution caused small changes to the EGR %, intake manifold gas temperature and the 

exhaust gas temperature parameters. The injection timing was electronically held 

constant by reprogramming the engine’s ECU. Speed and load were held constant by 

using a combination of dynamometer and engine controllers. 

 

4.3 Hydrogen Substitution 

Figure 4.1 displays the actual values of hydrogen substitution.   The flow rate of 

hydrogen to be used for substitution was calculated from the diesel flow rate, which 

varies and shifts with the operation of the engine, even at steady state.  There is slight 

variation of hydrogen percentage at the given points between modes.  However, this 

Table 4.1:  Parameters of baseline operations for the four test modes. 

 

 

Mode Load 
(kW)

EGR 
(%)

Boost  
(bar)

Intake Manifold Gas 
(oC)

Exhaust Gas 
(oC)

Pilot Inj. 
(oATDC)

Main Inj. 
(oATDC)

1800 rpm @ 25% Max. Ouput 15.7 10.5 0.2 56.3 332.5 -17.4 2.9
1800 rpm @ 75% Max. Ouput 46.5 0.7 0.7 42.0 476.9 -38.3 -6.2
3600 rpm @ 25% Max. Ouput 26.1 1.4 0.9 70.3 247.9 -56.8 -12.3
3600 rpm @ 75% Max. Ouput 78.2 1.0 1.1 76.5 476.4 -58.1 -13.6

383



54 

 

variation is small and the step changes in hydrogen percentage are large enough to ignore 

this discrepancy.  

4.4 Needle Lift 

The needle lift provides an indication of the injection timing and duration. The 

needle lift also indicated whether the injection timing had shifted. Three needle lift traces 

were taken at 1800 rpm at 25% maximum output without the addition of hydrogen.  

These three repeated needle lift traces are given in Figure 4.2.  
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Figure 4.1:  Actual hydrogen percentage energy substitution for the four modes tested,
with ! 0%, " 2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution on an 
energy basis. 
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Figure 4.2 indicates that the injection timing is indeed locked down. Though, the 

needle lift trials share a common profile, they vary in starting height.  Figure 4.3  and 

Figure 4.4 are needle lift profiles with hydrogen substitution. Hydrogen substitution 

causes the absolute height of the needle lift to reduce. This indicates smaller volume of 

diesel fuel passes through the fuel injectors as hydrogen substitution increases. It is 

important to note that hydrogen substitution did not cause a shift in injection timing or 

injection duration.   
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Figure 4.2:  Repeatability study of needle lift at 1800 rpm at 25% maximum outputs, of. 
Trial 1, Trial 2 and Trial 3. 
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Figure 4.3:  Needle lift at 1800 rpm at 25% maximum output, with 0%, 
2.5%, 7.5% and 15%.hydrogen substitution on an energy basis.  
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Figure 4.4:   Needle lift at 1800 rpm at 75% maximum output, with 0%, 
2.5%, 7.5% and 15% hydrogen substitution on an energy basis. 
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4.5 Pressure Trace 

Pressure traces were measured on all four cylinders. Apparent heat release rates 

for each cylinder were calculated from the pressure traces.   Historically, there has been 

variation in pressure traces between the four cylinders of Penn State’s Detroit Diesel 2.5L 

TD DI-4V Automotive Diesel Engine. Mainly, the difference is due to the condition of 

individual piston rings of each cylinder. Piston rings prevent combustion gases from 

blowing by the pistons into the crank case.  If the high pressure combustion gases pass by 

the piston rings, the pressure traces and the calculated apparent heat release rate will be 

affected. 

As a result of the difference in cylinder pressure held by the piston rings, the 

completeness of combustion will vary from cylinder to cylinder.  Incomplete combustion 

from a cylinder will increase emissions such as hydrocarbons, carbon monoxide and 

particulate matter.  This incomplete combustion is further exacerbated when large 

amounts of EGR are introduced.  The EGR will absorb energy released from the 

combustion process, reducing the rate of oxidation.  

  A variation in cylinder to cylinder pressure is to be expected. Figure 4.5 is 

the plot of the pressure trace for all four cylinders. Cylinder 3 is seen in this plot and 

others to be the representative average of pressure trace and thus of the heat release.  

Cylinder 3 will be used in plots when mode to mode comparisons are made.    
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Pressure traces indicate the in-cylinder pressure caused by combustion and 

volume change.  Figure 4.6 to Figure 4.9 display the pressure traces from the four test 

modes, with hydrogen substitution.  In general an increase of speed, and even more so, an 

increase in load will increase the combustion pressure.  The maximum in cylinder 

pressure is desired to occur after top dead center so that energy from combustion will be 

released during the power stoke.  

 Optimum power release does not occur in the low speed modes, but does in the 

two high speed modes. The 1800 rpm at 25% maximum output mode has its maximum 

pressure peak occurring at top dead center.  This means that a there is a large pressure 

increase occurring before top dead center, which is fighting the piston’s travel during the 

compression stroke. The 1800 rpm at 75% maximum output condition has a delay in 
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Figure 4.5:  Comparison between pressure traces from the four cylinders of the Detroit
Diesel 2.5L TD DI-4V Automotive Diesel Engine at 1800 rpm at 25% maximum output
for Cylinder 1,  Cylinder 2,  Cylinder 3 and  Cylinder 4. 
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pressure release. This too will cause a drop is efficiency.  The pressure is being delayed 

from creating power during the power stroke. 

Hydrogen causes the maximum in-cylinder pressure to increase in all four modes. 

The effect is greater in the high load modes, where more complete combustion of the fuel 

occurred. Also, in the high load modes, hydrogen causes the maximum pressure peak to 

occur earlier.  The substitution of hydrogen for diesel fuel decreases the amount of diesel 

fuel injected in both the pilot and main injections. Hydrogen combusts as the premixed 

fuel is ignited by the diesel pilot injection. A large amount of fuel and thus pressure is 

released during the pilot injection.  This pressure accumulates with the pressure from the 

main injection and leads to a higher maximum pressure.  
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Figure 4.6:   Pressure trace at 1800 rpm at 25% maximum output, with 0%, 
2.5%, 7.5% and 15%.hydrogen substitution on an energy basis. 
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Figure 4.7:   Pressure trace at 1800 rpm at 75% maximum output, with 0%, 
2.5%, 7.5% and 15%.hydrogen substitution on an energy basis. 
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Figure 4.8:   Pressure trace at 3600 rpm at 25% maximum output, with 0%, 
2.5%, 7.5% and 15%.hydrogen substitution on an energy basis. 
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4.6 Apparent Heat Release Rate 

Figure 4.10 through Figure 4.13 display the apparent heat release rates of the four 

test modes with hydrogen substitution.  The baseline apparent heat release rate of each of 

the four modes is different due to the load, speed and injection timing of the modes.  In 

the case of the low speed modes a well defined apparent heat release rate from the pilot 

injection was seen. The combustion of the pilot injection fuel is known as the premixed 

combustion phase [5]. Here heat release is caused by the combustion of a premixed 

flame. Since the hydrogen is introduced into the cylinder during the intake stroke, no 

further hydrogen is available for combustion after the intake valve shuts. The bulk of the 

hydrogen is burned in the premixed combustion phase of the pilot injection. GC exhaust 
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Figure 4.9:   Pressure trace at 3600 rpm at 75% maximum output, with 0%, 
2.5%, 7.5% and 15%.hydrogen substitution on an energy basis. 
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data indicated an increase of hydrogen in the exhaust as fumigated levels of hydrogen 

increase.  This however is a small amount of unburned hydrogen which is analogous to 

unburned hydrocarbons seen in exhaust.  

Figure 4.10 and Figure 4.11 show slight ignition delay in the premixed 

combustion phase, with increased levels of hydrogen.  The diesel fuel acts as a pilot to 

ignite the hydrogen, since hydrogen as a lower cetane number then diesel fuel.  

Increasing levels of hydrogen slightly increase the apparent heat release rate of the 

premixed combustion phase. With the increase in hydrogen, less diesel fuel is injected. 

Thus, less heat is absorbed during the fuel vaporization phase between the premixed 

combustion phase and the mixing-control combustion phase of the main injection [5].  

The heat release during the mixing-controlled combustion phase is decreased with the 

increase of hydrogen substitution. This is because less diesel fuel is injected during the 

main injection phase when hydrogen substitution occurs.  Overall, the introduction of 

hydrogen has modest effects on the apparent heat release rates.    
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Figure 4.10:  Apparent heat release rate at 1800 rpm at 25% maximum output, with 
0%, 2.5%, 7.5% and 15%.hydrogen substitution on an 

energy basis. 
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Figure 4.11:   Apparent heat release rate at 1800 rpm at 75% maximum output, with 
0%, 2.5%, 7.5% and 15% hydrogen substitution on an 

energy basis. 
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Figure 4.12:   Apparent heat release rate at 3600 rpm at 25% maximum output, with 
0%, 2.5%, 7.5% and 15%.hydrogen substitution on a energy 

basis. 
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Figure 4.13:   Apparent heat release rate at 3600 rpm at 75% maximum output, with 
0%, 2.5%, 7.5% and 15%.hydrogen substitution on an 

energy basis. 
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4.7 Bulk Cylinder Gas Temperature 

The temperature of the bulk cylinder gas was calculated from the pressure traces 

using the ideal gas law. Figure 4.14 displays the maximum in cylinder gas temperature 

for all four modes with 0%, 2.5%, 7.5% and 15% hydrogen substitution. 

 

The 1800 rpm at 25% maximum output mode has a bulk cylinder gas temperature 

nearing that of the other three modes even though it utilizes ~10% EGR, where the other 

modes utilize less then 2% EGR. The 1800 rpm at 25% maximum output mode would be 

expected to have a lower temperature since EGR lowers combustion temperatures [6]. 

Jacobs et al. explain that in the presence of EGR the bulk gas temperature will increase 

due to the increase in temperature of the intake charge and the decreasing of trapped mass 

 

0

500

1000

1500

2000

1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%

B
ul

k 
C

yl
in

de
r T

em
pe

ra
tu

re
 (o C

)

Figure 4.14:  Maximum bulk cylinder gas temperature of the four modes tested, with  
0%, " 2.5%, " 7.5%, and " 15% hydrogen substitution on an energy basis. 
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[30]. Further more, Jacobs, et al. go on to say that flame temperature would therefore be a 

more accurate predictor of NOX formation then that of bulk gas temperature.  

According to Figure 4.14, hydrogen makes less than a 0.5% difference in bulk 

cylinder temperature even at 15% energy input.  According to the calculation of the 

cylinder bulk gas temperature, hydrogen makes relatively little change.  To further 

understand what is occurring in the cylinder, adiabatic flame temperature must be 

considered.  A complex model, outside the scope of this work, is necessary to calculate 

the adiabatic flame temperature, due to the consumption of the hydrogen fuel during the 

combustion of the pilot injected diesel fuel.  

4.8 Exhaust Temperature 

The exhaust temperature is examined in Figure 4.15.  The exhaust temperature 

provides an indirect representation of the global combustion temperature. Enthalpy is 

removed from the exhaust gases by the turbocharger and EGR loop resulting in a reduced 

exhaust gas temperature.  However, exhaust temperature will provide an indication of 

major alteration in combustion conditions and the engine’s mode of operation, which is 

useful to ensure repeatability of engine operation.   
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4.9 Equivalence Ratio 

The equivalence ratio is defined as: 

Where actualA
F )(  is the actual fuel-air ratio and ricstochiometA

F )( is the stochiometric 

fuel-air ratio. The actual fuel-air ratio was calculated in real-time based on flow rates of 

hydrogen, diesel and air.  

The high load modes utilize a larger amount of fuel, which leads to a higher 

equivalence ratio.  Also, the high speed modes have increased levels of air density, via 

the turbo charger. These reasons explain why each of the four modes have the baseline 
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Figure 4.15:  Exhaust temperature of the four modes tested, with ! 0%, " 2.5%, " 5%, 
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equivalence ratio given in Figure 4.16. For example the low amount of fuel and high 

level of boost air in 3600 rpm at 25% maximum output mode, produces a noticeably 

lower equivalence ratio compared to the other modes.  

The equivalence ratio is used to provide insight into the gaseous exhaust 

emissions. Increased levels of hydrogen cause an increasing trend in equivalence ratio. 

The increase in equivalence ratio is because the hydrogen is introduced into the engine 

via the air intake. By doing so, some portion of intake air must be displaced to give way 

to the hydrogen.   In the 3600 rpm at 75% maximum output mode hydrogen is seen to 

decrease the equivalence ratio. This is due to the large level of boosted air, that has a 

greater effect on lowering the equivalence ratio than hydrogen does on increasing the 

equivalence ratio when hydrogen substitution occurs. 
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Figure 4.16:  Equivalence ratio of the four modes tested, with ! 0%, " 2.5%, " 5%, "
7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 
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4.10 Gaseous Emissions 

Gaseous emissions are presented in brake specific units (g/kWOutput-hr). They 

were also calculated in fuel energy specific units (g/kWFuel energy in-hr). The fuel energy 

specific unit values yield plots with similar trends as those of the brake specific emission 

plots. Thus, the brake specific emission plots are presented. 

4.11 Erroneous NOX Emissions Measurements 

Injection timing was locked down during fuel substitution to prevent the engine’s 

ECU from shifting injection strategies. Locking down the injection timing is important 

because of the engine’s response to fuel substitution. During testing, the speed and load 

were held at constant values. As hydrogen levels increased, the engine throttled back 

diesel fuel to maintain a constant speed.  The ECU’s injection strategy is based on engine 

speed and diesel fuel injection volume. The injection timing was manually held constant 

to prevent the injection strategy from moving to a later injection, when injected diesel 

fuel volume decreased. A shift in injection strategies will cause erroneous emissions and 

de-rate the engine.   

Erroneous NOX emissions measurements due to a shift in injection timing are 

displayed in Figure 4.17.  These erroneous emissions, with timing drift, are compared to 

the emissions with the injection timing locked.  Brake specific NOX emissions are greatly 

reduced as hydrogen substitution increases and injection timing is allowed to drift to a 

late injection strategy.  These large NOX emission reductions are not caused by the 

combustion of hydrogen. The emission reductions caused by the shift in injection timing 
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were recreated, without hydrogen substitution, by varying the injection timing to the 

same shifted injection timing observed with hydrogen substitution. Figure 4.18 displays 

the needle lift caused by the hydrogen substitution, when injection timing is not locked.  
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Figure 4.17:  Brake specific NOX emissions at 1800 rpm at 75% maximum output when
injection timing is allowed to drift and when injection timing is locked down, with ! 0%, 
" 2.5%, " 5%, " 15%, " 25% and " 30% hydrogen substitution on an energy basis.  

Table 4.2:  Percent difference of brake specific NOX emissions from the baseline at 1800 
rpm at 75% maximum output with 0%, 2.5%, 5% 15%, 25% and 30% hydrogen
substitution on an energy basis.  Positive values indicate an increase and negative values
indicate a decrease from the baseline. 

1800 @ 75% with Timing Drift 1800 @ 75% with Timing Locked
0 % Diff. n/a n/a

2.5 % Diff. -6.6 0.4
5 % Diff. -5.7 0.8

15 % Diff. -17.2 1.1
25 % Diff. -55.7 -0.9
30 % Diff. -54.8 -2.7  
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Large reductions in NOX emission, reported in the literature to be caused by 

hydrogen substitution, are not due to hydrogen.  The emissions reductions are from a shift 

in injection timing along the engine’s injection timing map. Thus, it would be necessary 

to reprogram a vehicle’s ECU to properly utilize hydrogen substitution with de-rating the 

engine when retrofitting a vehicle.  

4.12 Gaseous Emissions: NOX 

The 1800 rpm at 25% maximum torque mode has lower base levels of brake 

specific NOX due to the mode’s use of ~10% EGR. The other modes utilize less then 2% 

EGR, which accounts for the difference in base NOX levels.  NOX emission increased 

slightly in all four modes with the introduction of hydrogen. Hydrogen substitution has its 
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Figure 4.18:  Needle lift at 1800 rpm at 75% maximum output, when injection timing is
not locked, with 0%, 15%, and 30%.hydrogen substitution on an 
energy basis. 
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greatest effect on the low load modes. In the high load modes, the increase caused by 

hydrogen is small and falls within the error bars. The largest increase of NOX occurs in 

the 3600 rpm at 25% maximum output mode. This mode sees an increase of 9% from the 

baseline with the substitution of 15% hydrogen. NO and NO2 must be examined to 

further explain and understand the NOX emissions. 
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Figure 4.19: Brake specific NOX emissions of the four modes tested, with ! 0%, "
2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 
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4.13 Gaseous Emissions: NO 

NO classically accounts for the largest contribution of NOX. Figure 4.20 displays 

the brake specific NO emissions from the modes tested.  In comparison between the two 

high load modes and the two low load modes, the high load modes produce higher levels 

of NO. The increased levels of NO are thermal NO, produced from the increased heat 

release that occurs at high load conditions.  

The two high load modes and two low load modes have similar magnitudes and 

trends, respectively.   However, there is a slight discrepancy between the two low load 

modes. The 1800 rpm at 25% maximum output mode has a lower magnitude of NO 

compared to that of the 3600 at 25% maximum outputs. This again can be explained by 

the ~10% EGR used in the 1800 rpm at 25% maximum output mode. 

Table 4.3:  Percent difference of brake specific NOX emissions from the baseline at the 
four modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

 

1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 % Diff. n/a n/a n/a n/a

2.5 % Diff. 3.0 0.9 4.3 -0.6
5 % Diff. 4.6 0.8 6.6 -0.3

7.5% Diff. 3.4 1.0 7.8 1.3
10 % Diff. 2.5 1.0 7.7 2.0
15 % Diff. 1.8 1.6 9.0 3.1  
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Figure 4.20 shows a general trend of decreasing levels of NO with the increase of 

hydrogen.  The decrease is more pronounced and even outside of the error bars in the 

case of the two low load modes. The higher load modes show a less significant 

decreasing trend that falls within the error bars after 2.5% hydrogen substitution.  

Table 4.4 show that in the low loads modes, 2.5% of hydrogen substitution can 

reduce brake specific NO by 17%.  Table 4.4 also points out that higher speeds are 

affected more by hydrogen substitution, than lower speeds.  
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Figure 4.20:   Brake specific NO emissions of the four modes tested, with ! 0%, "
2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 
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4.14 Gaseous Emissions: NO2 

As with the case of brake specific NO emissions, the high speed modes produce 

similar magnitudes of brake specific NO2 emissions. However, the low speed modes 

again produce a dissimilar amount NO2. To explain this discrepancy the production of 

NO2 must be examined.  

Table 4.4:   Percent difference of brake specific NO emissions from the baseline at the 
four modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an 
energy basis. Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 % Diff. n/a n/a n/a n/a

2.5 % Diff. -16.9 -3.4 -17.1 -5.0
5 % Diff. -24.2 -5.2 -28.5 -6.9

7.5% Diff. -28.7 -4.8 -35.7 -7.0
10 % Diff. -29.7 -6.0 -42.1 -7.1
15 % Diff. -35.0 -4.7 -48.5 -5.7  
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The major path in the production of NO2 is from NO [51]. This path is given in 

Eq. 4.2.  

The HO2 is produced from the increased levels of hydrogen. Glassman states that 

the most probable initial step in the combustion of oxygen and hydrogen is [52]: 

With the path from NO to NO2 in mind, the difference in magnitude between the 

low load conditions can again be explained by the ~10% of EGR used in the 1800 rpm at 

25% maximum output mode.  There is more NO available in the 3600 rpm at 25% 

maximum output mode to be converted to NO2.  
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Figure 4.21:   Brake specific NO2 emissions of the four modes tested, with ! 0%, "
2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution an the energy basis. 
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Table 4.5 displays the percent difference of the increase of NO2 caused by the 

hydrogen substitution. Since the baseline values of NO2 are initially very low, the effect 

caused by hydrogen is quite dramatic.   Figure 4.22 shows the transition from NO being 

the dominant contributor to NOX, to NO2 being the dominant contributor to NOX, due to 

hydrogen substitution, in the case of 3600 rpm at 25% of maximum output.  A shift in 

NOX species also occurs in the 1800 rpm at 25% of maximum output mode; however the 

NO2 does not overcome the NO, as in the case presented in Figure 4.22. This is due to the 

EGR in the 1800 rpm at 25% of maximum output mode.   A slight shift in NOX species 

occurs in the high load modes as well, but this shift is small compared to that of the low 

load modes.  

Table 4.5:   Percent difference of brake specific NO2 emissions from the baseline at the 
four modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

 

1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 % Diff. n/a n/a n/a n/a

2.5 % Diff. 53.3 72.1 28.6 105.1
5 % Diff. 68.0 87.1 41.5 124.9

7.5% Diff. 70.8 85.8 47.9 135.4
10 % Diff. 70.2 94.8 51.5 139.6
15 % Diff. 74.8 90.2 56.6 139.1  
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The conversion from NO to NO2, due to hydrogen substitution, is beneficial even 

though NOX levels increase.  NO2 is used as the oxidizer in Continuously Regenerating 

Trap (CRT) systems, which are used to reduce particulate matter emissions [53].  If NO2 

is not present in large enough quantities, it is necessary to oxidize NO into NO2, to enable 

passive regeneration in the CRT [54]. The oxidation of NO to NO2 would require an 

oxidation catalyst to be placed upstream of the CRT.  The increased production of NO2 

from hydrogen substitution would reduce the need for NO oxidation catalysts in the CRT 

system.    
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Figure 4.22:  Brake specific NOX, NO and NO2 emissions vs. 
energy percent from hydrogen fuel for 3600rpm at 25% of maximum output.  
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4.15 Gaseous Emissions: HC 

HC emissions are difficult to sample. They tend to drop out of the heated exhaust 

sample and condense if they encounter cold spots in the sampling apparatus.  This is 

reflected in the 1800 rpm at 25% maximum output mode seen in Figure 4.23. 

 

HC emissions are products of incomplete combustion.  Incomplete combustion 

can occur when the in cylinder temperature and pressure are not high enough to 

completely combust the injected fuel.  HC emissions will also occur, if injected diesel 

fuel penetrates past the flame front and reaches the cylinder walls.  Also, atomized fuel 

may also seep into the crevices of the cylinder, excluding it from combustion.  

The low load modes have increased levels of brake specific HC emissions. This is 

due to the incomplete combustion that occurs at low load.  The 3600 rpm at 25% 
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Figure 4.23:   Brake specific HC emissions of the four modes tested, with ! 0%, " 2.5%, 
" 7.5% and " 15% hydrogen substitution on an energy basis. 

409



80 

 

maximum output mode has a larger degree of incomplete combustion. This is due to this 

mode’s overly lean equivalence ratio. 

Both of the high load modes have low levels of HC emission.  The 3600 rpm at 

25% maximum output mode has higher levels of HC emission, due to the cycle speed of 

the mode, which reduces the time for the fuel to completely combust.  

At high loads, hydrogen substitution reduces brake specific HC emissions. This is 

because there is less diesel fuel in the main injection that can be lost to incomplete 

combustion by either hiding in a crevice or gathering on the cylinder walls.  However, in 

the low load modes, brake specific HC emissions increase due to hydrogen substitution. 

In the low load modes the heat release is much lower than that of the high load modes.  

When hydrogen substitution occurs there is less diesel fuel injected during the main 

injection, which further reduces the heat release. This reduction in heat release acts to 

further increase the amount of HC released from incomplete combustion. 

 

 

Table 4.6:   Percent difference of brake specific HC emissions from the baseline at the
four modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

 

1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 % Diff. n/a n/a n/a n/a

2.5 % Diff. 11.4 -1.7 5.3 -4.2
5 % Diff. 32.6 36.7 13.6 4.5

7.5% Diff. 4.4 -9.7 7.0 -10.7
10 % Diff. -4.0 -25.5 17.6 -11.4
15 % Diff. -8.2 -30.4 12.1 -8.8  
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4.16 Gaseous Emissions: Unburned Hydrogen 

Unburned HC emissions can be correlated directly to the unburned hydrogen seen 

in Figure 4.24. There is very little unburned hydrogen. Levels of unburned hydrogen 

increase with low load modes that suffer from incomplete combustion. Unburned 

hydrogen also increases as the substitution percent increases.  

4.17 Gaseous Emissions: CO 

CO emissions correlate with and are primarily controlled by air fuel ratio. 

Heywood states that a diesel engine operates in fuel lean conditions and thus CO 

emissions are unimportant and do not need to be discussed [5].   Nonetheless, the 
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Figure 4.24:   Brake specific H2 emissions of the four modes tested, with ! 0%, " 2.5%, 
" 7.5%, and " 15% hydrogen substitution on an energy basis. 
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formation of CO is directly linked to the availability of HC. The principal CO formation 

is based on the hydrocarbon combustion mechanism[51]. 

The mechanism is summarized by:  

The R stands for a hydrocarbon radical.  

In the case of 3600 rpm at 25% of maximum output mode, the brake specific CO 

levels are higher than those of the other modes. At this mode, the turbo-charger is active, 

increasing the density of the charged air, while the low load is demanding little fuel. 

Hence the equivalence ratio is lean as seen in Figure 4.16. Even though this mode is lean, 

there is a large amount of CO. The large CO content is due to incomplete combustion 

which is redetected in the increased levels of brake specific hydrocarbon at this mode. 

CORCORCHORORRH )*))*))*))*))*)
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Figure 4.25:   Brake specific CO emissions of the four modes tested, with ! 0%, " 2.5%, " 5%, 
" 7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 
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4.18 Gaseous Emissions: CO2 

Carbon dioxide is one of the main products of combustion when burning 

hydrocarbon fuels.  Reducing hydrocarbon fuel will reduce the amount of carbon dioxide 

formed during combustion.  This is accomplished during hydrogen substitution.   

Table 4.7:   Percent difference of brake specific CO emissions from the baseline at the 
four modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

 

1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 % Diff. n/a n/a n/a n/a

2.5 % Diff. -0.3 -2.1 -2.1 -3.0
5 % Diff. -8.2 2.3 -1.0 -6.5

7.5% Diff. -16.4 -1.8 -3.8 -8.1
10 % Diff. -18.8 13.0 -4.7 -12.3
15 % Diff. -26.0 16.6 -11.3 -23.6  
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There is an increased level of brake specific CO2 in the 3600 rpm at 25% 

maximum output mode.  The excess CO2 is coming from the high levels of CO in this 

mode. CO converts to CO2 in the path given in Eq. 4.5 [52]. 
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Figure 4.26:   Brake specific CO2 emissions of the four modes tested, with ! 0%, "
2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 

Table 4.8:   Percent difference of brake specific CO2 emissions from the baseline at the 
four modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

 

1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 % Diff. n/a n/a n/a n/a

2.5 % Diff. 2.1 2.0 2.6 2.0
5 % Diff. 3.6 3.4 4.9 4.4

7.5% Diff. 6.0 5.6 6.2 5.6
10 % Diff. 8.0 6.6 8.7 8.0
15 % Diff. 12.9 11.2 12.8 13.6  

 

OHCOHOCO ()*,( 22  4.5
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In general, the introduction of hydrogen causes an almost 1 to 1 reduction of CO2. 

As the fraction of hydrogen increases, the quantity of diesel fuel decreases. Hence there 

are less HC radicals available to form CO.  

4.19 Gaseous Emissions: Particulate Matter 

The majority of particulate will be created in the diffusion flame during the 

mixing control burn phase, where fuel pyrolysis occurs.   The creation of particulate is a 

competition between formation and oxidation [5]. In conditions where higher 

temperatures occur, particulate will be oxidized and emitted levels will decrease.  

A correlation between levels of brake specific particulate emissions and apparent 

heat release rate can be made. In the apparent heat release rate plots above, the high load 

modes had higher rates of heat release.   Below in Figure 4.26 the high load modes have 

lower levels of brake specific particulate emissions, than those of the low load modes. 

The higher apparent heat release rates signify a higher rate of oxidation occurred in the 

high load modes.  

Hydrogen substitution appears to reduce brake specific particulate emissions at 

high speeds and increase brake specific particulate emissions at slow speeds.  These 

trends can be explained by again looking at the apparent heat release rates of the modes.   

In the case of the low speed modes hydrogen decreases the apparent heat release rates of 

the low speed modes, reducing oxidation.  In the high speed modes there is a slight 

decrease in apparent heat release rates, but the decrease of hydrocarbon fuel levels during 

hydrogen substitution reduces the amount of carbon available to form particulate. 
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Figure 4.27:   Brake specific PM emissions of the four modes tested, with ! 0%, "
2.5%, " 7.5% and " 15%hydrogen substitution on an energy basis. 

Table 4.9:   Percent difference of brake specific HC emissions from the baseline at the
four modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 % Diff. n/a n/a n/a n/a

2.5 % Diff. 4.5 35.4 -16.5 -0.8
7.5% Diff. 25.2 56.1 -1.3 -8.5
15 % Diff. 31.4 77.7 -9.8 -16.0  
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4.20 Brake Specific Fuel Consumption 

The brake specific fuel consumption was calculated based on the consumption of 

both diesel and hydrogen fuel.  Internal combustion engines are most efficient at high 

loads.   This is reflected in Figure 4.27.  The 3600 rpm at 25% maximum output mode, 

has the poorest efficiency of all the modes. This is due to the large amount of incomplete 

combustion which occurs in this mode.  

Hydrogen substitution decreased the brake specific fuel efficiency of the modes 

due to the reduction of air.   Fumigation of hydrogen into the air intake displaces air for 

fuel in the form of hydrogen.  Air is the working fluid of an engine, thus a reduction in air 

will reduce the output of an engine.  Brake specific fuel efficiency loses experienced 

when hydrogen is fumigated into the air intake, would be recovered by direct injection of 

hydrogen into the combustion cylinder.   
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Figure 4.28:  Brake specific  fuel consumption of the four modes tested, with ! 0%, "
2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 
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4.21 Summary 

The benefits of hydrogen for diesel fuel substitution are more modest than those 

reported from anecdotal reports. The cause of the emission reductions seen in anecdotal 

reports are from injection timing shifts, not hydrogen combustion. 

However, hydrogen substitution does yield modest emissions reduction with 

limited penalty. The foremost benefit is the reduction in hydrogen carbon fuel during 

substitution for hydrogen.  Fumigation of hydrogen into the air intake was seen to 

displace up to 30% of the diesel fuel energy required to run a compression ignition 

engine at a high load.  Also carbon dioxide was reduced by at a nearly a one to one 

percentage reduction on the basis of fuel energy. 

Hydrogen substitution causes a dramatic shift of the NOX species, from NO 

dominance to NO2 dominance.  This NOX shift has the potential to be coupled with CRTs 

to oxide soot.  

Table 4.10:  Percent difference of brake fuel consumption from the baseline at the four
modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

 

1800 @ 25% 1800 @ 75% 3600 @ 25% 3600 @ 75%
0 % Diff. n/a n/a n/a n/a

2.5 % Diff. 0.3 0.4 0.1 0.2
5 % Diff. 0.6 0.6 0.1 0.4

7.5% Diff. 1.1 1.7 1.6 0.5
10 % Diff. 1.4 2.5 1.5 0.3
15 % Diff. 2.0 3.6 4.0 0.2  
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The benefits of hydrogen substitution are significant, since these results show that 

substitution of the diesel fuel with hydrogen can be accomplished with little or no 

detrimental effect.  Thus, substantial quantities of diesel fuel can be “displaced” through 

hydrogen utilization via substitution. The practicality of vehicles utilizing hydrogen 

substitution is limited by the feasibility of equipment cost versus the cost benefits from 

the modest emission reductions. 
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Chapter 5 
 

Discussion and Results of Advanced Combustion Modes with Hydrogen 
Substitution 

5.1 Introduction 

 In this section, the results of hydrogen assisted combustion under advanced 

combustion modes are presented.  Though an in-depth study of hydrogen assisted 

combustion under advanced combustion modes is novel, the ability to reproduce the 

advanced combustion modes on a stock production engine is equally fascinating.  The 

advanced combustion modes used in this study are based on work done by Wagner, 

Sluder and coworkers at Oak Ridge National Laboratory [39, 44-49].  

Wagner, Sluder and coworkers developed an advanced combustion mode known 

as High Efficiency Clean Combustion (HECC). The HECC mode is an efficient 

LTC/PCCI mode, which reduces NOX and PM while improving brake specific fuel 

efficiency.  An LTC mode is typically classified as a mode in which NOX and PM are 

reduced via high concentrations of EGR.   In this study, like the work done at Oak Ridge, 

an LTC mode is presented as an intermediate step to the HECC mode.     

Wagner, Sluder and coworkers preformed their study on a modified Mercedes 

1.7L direct-injection diesel engine.  This study was conducted on a Detroit Diesel 2.5L 

TD DI-4V engine.   The differences between the two engines made it impossible to repeat 

the exact conditions preformed at Oak Ridge National Laboratory.  However, Wagner, 

Sluder and coworkers have shown it possible to achieve HECC at a broad range of speeds 
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and loads [39]. There were also variations in the NOX and PM reduction due to the range 

of speed and load conditions which Wagner, Sluder and coworkers used to achieve the 

HECC mode. 

In this study, a HECC mode was located at 1800 rpm at 25% of maximum output 

because of its normally high concentrations of EGR. The high EGR concentration is due 

to the mode’s low speed, which utilizes little boost. High exhaust pressure and low 

manifold pressure allow EGR to readily overcome the positive pressure of the intake 

manifold.  The HECC mode listed in this study shares trends with Wagner, Sluder and 

coworkers’ HECC modes. The HECC mode used in this study achieved a 71% brake 

specific NOX reduction, an 80% brake specific PM reduction, a 4% brake specific fuel 

consumption reduction, a 73% brake specific HC increase, and a 106% CO increase. 

The results of hydrogen substitution for diesel fuel on the basis of energy percent 

are presented below in the baseline mode, LTC mode and HECC mode. Hydrogen 

substitution was done at 0%, 2.5% 5% 7.5% 10% and 15%, of the fuel energy. Hydrogen 

substitution in advanced modes caused modest emission reductions, which were similar 

to emission reductions seen during hydrogen substitution for conventional combustion 

modes.  A 15% hydrogen substitution was achieved in the advanced combustion modes 

without significant penalty on emissions or performance. 
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5.2 Exhaust Gas Recirculation 

 The key parameter used to enter the HECC mode is a high concentration of EGR, 

~50%.  EGR% was defined as [29]:    

 On the Detroit Diesel 2.5L TD DI-4V engine there is an EGR valve that diverts 

exhaust gas into the intake manifold. This valve is controlled by the engine’s ECU. With 

the EGR valve fully open, the volumetric flow rate of EGR supplied into the intake 

manifold from the exhaust manifold was dependent on the gradient between the exhaust 

manifold pressure and the intake manifold pressure. Engine modes that utilize boost 

pressure from the turbocharger can not achieve high concentrations of EGR because the 

boost pressure in the intake manifold is too great for the exhaust gas to overcome.  

 There are two methods to force large levels of exhaust into the intake manifold 

via the EGR loop. The first method is to increase the back-pressure on the exhaust.  This 

is accomplished by causing a flow restriction downstream of the EGR loop.   A valve on 

the exhaust pipe can be used as a restriction. In this method, exhaust is forced into the 

EGR loop due to the downstream restriction. Because an internal combustion engine is an 

air pump, this method is inherently problematic, ultimately de-rating the engine by 

preventing the engine from achieving its maximum air throughput.  

 In the second method, the intake air is choked by a restriction upstream of the 

intake manifold and EGR loop. A valve can be used to create a restriction, choking the 

intake air and causing exhaust to be pulled through the EGR loop.  Unlike the case of the 

back pressure method, this intake choking method does not cause the engine to derate 
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from a pumping restriction. The second method, however, will derate the engine due to 

the exchange of air (the working fluid of an engine) for EGR.  

 The choking EGR method was initially used in attempts to enter the HECC mode. 

Unfortunately, the Detroit Diesel 2.5L TD DI-4V engine was found to produce exorbitant 

levels of CO emissions and HC emissions at 50% EGR.   These high emissions were due 

to incomplete combustion, with levels varying per cylinder. This incomplete combustion 

is reflected in the apparent rate of heat release seen in Figure 5.1.  

The incomplete combustion was most pronounced in Cylinder 1, which was caused by 

poor mixing of the EGR and intake air.  Since the EGR loop connects to the air intake 

directly before the air actually enters the intake manifold there is little time for the EGR 

and air to mix. The phenomenon of high EGR concentrations increasing the cylinder to 

cylinder variation was noted by Zheng and coworkers [31].   
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Figure 5.1: In complete combustion seen in Apparent Heat Release Rate in cylinders for 
1800 rpm at 20 ft-torque. Pilot injection at -17ATDC and the main injection is at -2.9 
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 To eliminate the high levels of incomplete combustion, simulated EGR was used 

to achieve a HECC mode.  Bone-dry CO2 with a purity of 99.8% was used as simulated 

EGR, which was aspirated into the engine air intake downstream of the turbocharger at 

the same location as hydrogen aspiration. At this point of aspiration the simulated EGR 

was assumed to be well mixed.   

 In conjunction with simulated EGR, the Detroit Diesel 2.5L TD DI-4V engine’s 

EGR valve was set to full open. At 1800 rpm, 25% of maximum output, and with the 

EGR valve fully open, the engine will produce ~16% EGR.  With the engine-produced 

EGR and simulated EGR added together, the EGR requirement of the HECC mode was 

met. The method of using simulated EGR reduced the level of incomplete combustion 

observed during the exploration for the HECC mode.  

 Wagner, Sluder and coworkers cooled their EGR with a heat exchanger to prevent 

damaging the plastic intake manifold on their Mercedes 1.7L engine [49]. Cooled EGR is 

preferable since it will recover the volumetric efficiency of the engine that would 

otherwise be lost if intake air is hot.  The Detroit Diesel 2.5L TD DI-4V engine cools its 

EGR with a heat exchanger cooled by the circulating engine coolant. The simulated EGR 

was warmed to room temperature before entering the engine. It should be noted that a 

small error was introduced by using room temperature simulated EGR (~25oC) compared 

to using engine exhaust cooled by actual EGR (~50oC). 
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5.3 Mode Parameters 

Table 5.1 lists the parameters of the modes explored in this study. These 

parameters reflect the operating modes for 0% hydrogen on a fuel energy basis.  

Hydrogen substitution caused small changes to the EGR %, intake manifold gas 

temperature, and the exhaust gas temperature parameters. The injection timing was 

electronically held constant by reprogramming the engine’s ECU. Speed and load were 

held constant by using a combination of dynamometer and engine controllers. 

 

 The baseline mode utilized the engine’s default diesel fuel injection strategy for 

the given speed and load based on the engine’s ECU maps.   The LTC mode uses the 

same locked injection timing as the baseline mode, as well as with the maximum engine 

produced EGR and aspirated simulated EGR. The HECC mode utilizes a single pulse 

injection and advanced main injection timing. And in addition to the rail pressure was 

increased from a default pressure of 450 bar to 490 bar. The HECC mode also uses the 

maximum engine-generated EGR along with simulated EGR. 

 

 

Table 5.1: 0% parameters of advanced combustion mode hydrogen assisted diesel
combustion. All modes were run at 1800 rpm at 25% maximum of output.  

Mode Speed 
(rpm)

Load 
(kW)

EGR 
(%)

Simulated 
EGR (%)

Total 
EGR (%)

Boost 
(bar)

Rail 
Pressure 

(bar)

Intake   
Manifold 
Gas (oC)

Exhaust 
Gas (oC)

Pilot Inj. 
(oATDC)

Main Inj. 
(oATDC)

Baseline 1800 15.7 11 0 11 0.17 450 59 342 -17.4 2.9
LTC 1800 15.7 16 32 48 0.14 450 70 357 -17.4 2.9

HECC 1800 15.7 16 34 50 0.18 490 75 336 N/A -4.0
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5.4 Needle Lift 

 The needle lift data indicated the crank angle at which fuel is injected, as well as 

the duration of injection and needle lift height of fuel injected. Figure 5.2 displays the 

comparison of needle lift for the baseline, LTC, and HECC modes under 0% hydrogen.  

Predictably, the baseline mode and the LTC mode, had similar start of injection and 

injection durations. This is due to the injection timing being locked at -17.4 oATDC for 

the pilot injection, and 2.9 oATDC for the main injection timing in both modes. The 

HECC mode had a single injection that was set at -4 oATDC. The HECC mode also had 

higher needle lift since the mode utilized only a single injection and must inject all the 

required fuel during this single injection.  The area under the injection peaks represents 

the quantity of fuel injected during the actuation of the fuel injector. It is important to 

note that this HECC mode also utilized increased rail pressure, thus a large quantity of 

fuel was injected for the given injection duration and needle lift height.  
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Figures 5.3 through Figure 5.5 are the needle lift of the baseline mode, LTC 

mode, and HECC mode with hydrogen substitution. The needle lift signal contains noise 

from external sources.  A majority of the noise was filtered out by averaging 200 

samples. The needle lift signals’ reluctance to return to zero height after injection was 

caused by a combination of signal noise and oscillation inherent to a fast-acting spring 

system. The oscillation observed in the main injection was caused by the preceding pilot 

injection.  As to be expected, the pilot injections in Figure 5.3 and Figure 5.4 overlap.  

Because of the noise, and the oscillations shifting the height of the injection, the main 

injection is difficult to analyze. Figure 5.5 reflects the HECC mode, which utilized a 

single injection. Note that the needle lift signal in Figure 5.5 clearly shows that the 

increasing rate of hydrogen substitution decreases the height, and thus the quantity of 

diesel fuel introduced by the injector. 
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Figure 5.2:  Needle Lift comparison of the baseline mode, LTC mode and HECC mode
with 0% of hydrogen. baseline, LTC and HECC. 
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Figure 5.3:  Needle lift of baseline mode, with 0%, 2.5%, 7.5% 
and 15% hydrogen substitution on an energy basis. 
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Figure 5.4:  Needle lift of LTC mode, with 0%, 2.5%, 7.5% 
and 15% hydrogen substitution on an energy basis. 
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5.5 Pressure Trace 

 The pressure traces indicate the pressure due to cylinder volume reduction from 

the piston’s travel, as well as the pressure created from hot product gases.  The baseline 

mode and the LTC mode have similar pressure traces due to their similar parameters. In 

Figure 5.6 a 2.7% decrease in maximum pressure occurs in the LTC mode compared to 

the baseline. The reduction in maximum pressure seen in the pressure traces is due to the 

LTC mode’s high level of EGR. The EGR absorbs released heat, lowering the adiabatic 

flame temperature [1]. An increase in EGR levels also leads to a reduction in oxygen, 

oxidizer need to burn the fuel. Thus, the maximum pressure of the LTC mode is reduced.  

The maximum pressure produced in the HECC mode with 0% hydrogen substitution was 
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Figure 5.5:  Needle lift of HECC mode, with 0%, 2.5%, 7.5% 
and 15% hydrogen substitution on an energy basis. 
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21% lower then that of the baseline mode, due to the large degree of pre-mixed 

combustion which occurred in the HECC mode. The second pressure peak of the HECC 

mode is due to the mode’s transition to mixing-controlled combustion, which is further 

explained by the apparent heat release rate.   

 

 Figures 5.7 to 5.9 show the pressure traces of the baseline mode, LTC mode and 

HECC mode with 0%, 2.5%, 5% and 15% hydrogen substitutions. Increasing levels of 

hydrogen caused a slight increase in maximum pressure.  Table 5.2  compares the 

increase of peak pressure caused by hydrogen.  
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Figure 5.6:  Pressure trace comparison of the baseline mode, LTC mode and HECC mode
with 0% of hydrogen. baseline, LTC and HECC. 
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Figure 5.7:  Pressure trace of baseline mode, with 0%, 2.5%, 7.5% 
and 15% hydrogen substitution on an energy basis. 
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Figure 5.8:  Pressure trace of LTC mode, with 0%, 2.5%, 7.5% 
and 15% hydrogen substitution on an energy basis. 
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  Table 5.3 compares the increase of maximum pressure of the baseline mode 

compared to the LTC mode and the baseline mode compared to the HECC mode.  The 

LTC mode decreases slightly in maximum pressure compared to the LTC mode by 2.7% 
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Figure 5.9:  Pressure trace of HECC mode, with 0%, 2.5%, 7.5% 
and 15% hydrogen substitution on an energy basis. 

 

Table 5.2:  Percent difference of maximum pressure from 0% hydrogen substitution at the
three modes tested with 2.5%, 7.5% and 15% hydrogen substitution on an energy basis.
Positive values indicate an increase and negative values indicate a decrease from the
baseline. 

Baseline LTC HECC
0% Diff. n/a n/a n/a

2.5% Diff. -0.2 0.7 0.0
7.5% Diff. -0.3 0.7 0.6
15% Diff. 0.1 1.7 0.7  

 

432



103 

 

at 0% hydrogen substitution. The HECC mode, however, displays a 21.3% decrease in 

maximum pressure.    

5.6 Coefficient of Variance 

 The coefficient of variance is a measure used to quantify cycle-to-cycle variation 

based on the in-cylinder indicated mean effective pressure (IMEP).  Heywood defines the 

coefficient of variance as given in Eq. 5.2 [5]. 

 The mean (imep) and the standard deviation (3imep) of the coefficient of variance 

were calculated from 200 cycles of pressure traces.  A COVimep > 1 indicates increased 

variation between cycles. Table 5.4 displays the coefficient of variance of all four 

cylinders of the baseline mode, LTC mode, and HECC mode with hydrogen substitution.  

 

Table 5.3:   Percent difference of maximum pressure from the baseline mode to the LT
mode and HECC mode with 0%, 2.5%, 7.5% and 15% hydrogen substitution on an
energy basis.  Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

Baseline to LTC Baseline to HECC
0% Diff. -2.7 -21.3

2.5% Diff. -1.7 -21.1
7.5% Diff. -1.7 -20.4
15% Diff. -1.1 -20.8  

 

%100%100 1+1+
-
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imep
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 When compared to the baseline mode at 0% hydrogen substitution, the LTC mode 

overall displayed less cycle-to-cycle variation, except in Cylinder 1.   The pressure traces 

show that the 2.5 L DDC engine’s Cylinder 1 performed poorly due to inadequate mixing 

of the intake charge.  The HECC mode also displayed less cycle-to-cycle variation over 

the baseline mode at 0% hydrogen substitution.  The decreased cycle-to-cycle variation 

of the LTC mode and HECC mode can be attributed to the high EGR content used in 

these modes.  High EGR, however, is reported to increase cycle-to-cycle variation, not 

decrease it [5, 31].    The hydrogen substitution does not create any appreciable trends in 

coefficient of variation.  A repeatability study with 0% hydrogen has confirmed the lack 

of a trend in the coefficient of variance seen in table 5.4. 

5.7 Apparent Heat Release Rate 

 Figure 5.10 displays the apparent heat release rate of the baseline mode, LTC 

mode, and HECC with 0% hydrogen substitution.  The start of combustion of the pilot 

injection (-7.9TDC) of the LTC mode are delayed compared to the start of combustion of 

the pilot injection (-8.7 oATDC) for the baseline mode. The delay in start of combustion 

observed for the LTC mode is due to the mode’s high concentration of EGR, which 

Table 5.4: Coefficient of variance for all four cylinders baseline mode, LTC mode and
HECC mode with 0%, 2.5%, 7.5% and 15% hydrogen substitution on an energy basis. 

H2% Cyl. 1 Cyl. 2 Cyl. 3 Cyl. 4 Cyl. 1 Cyl. 2 Cyl. 3 Cyl. 4 Cyl. 1 Cyl. 2 Cyl. 3 Cyl. 4
0 5.5 5.2 5.6 4.6 6.4 3.0 3.0 3.3 3.6 2.9 3.8 3.2

2.5 5.6 5.0 5.2 4.6 4.6 3.2 3.4 3.2 3.5 3.0 3.6 3.3
7.5 5.6 4.8 5.7 4.5 7.1 3.3 3.1 3.4 3.5 3.3 4.1 3.5
15 5.4 4.4 5.9 4.4 10.2 3.7 4.3 4.2 3.6 3.0 3.6 3.0

HECCBaseline LTC
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absorbs the heat produced by the in-cylinder compression, requiring further time to 

achieve ignition.  Since its injection timing is different, the HECC mode’s start of 

combustion (7.1oATDC) cannot be compared to that of the other modes. 

The apparent heat release rate profiles of the baseline mode and LTC mode 

appear generic, corresponding to the four diesel combustion phases given by Heywood 

[5].  The HECC mode has a unique apparent heat release rate profile.  Diesel fuel is 

injected into this mode at -4 oATDC, but combustion does not start until 7.1oATDC.  The 

HECC mode has an 11.1o ignition delay. This extended start of combustion is due to the 

large concentration of EGR (~50%) used in the mode, as well as, an advanced injection 

timing.  This mode is unique as it utilizes only three of the four diesel combustion phases 

given by Heywood, including a longer then usual ignition-delay phase. The single 

injection of the HECC mode ends at 8.7 oATDC and the start of combustion begins at 

HECC (7.1oATDC). By the time combustion begins almost all of the fuel is injected into 

the cylinder, thus causing almost all of the fuel to be consumed in a pre-mixed 

combustion phase. Indicated by the end of injection and start of combustion overlapping, 

a small quantity of fuel was burned in the mixing-controlled combustion phase. However, 

the apparent heat release rate plot, given in Figure 5.10, does not indicate the presence of 

a mixing-controlled combustion phase peak.  Rather it indicates the heat release’s 

transition directly from a pre-mixed combustion phase to a late combustion phase, which 

is the trailing trace in the HECC mode’s apparent heat release rate plot.   The apparent 

heat release rate plot of the HECC mode provides verification that the mode is a PCCI 

combustion mode. 
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 Figures 5.11 through 5.13 show the apparent heat release rates of the baseline 

mode, LTC mode and HECC mode with 0%, 7.5% and 15% hydrogen substitution.  

Hydrogen substitution caused similar apparent heat release rate plots for both the baseline 

mode and the LTC mode. Hydrogen substitution caused the premixed combustion phase 

of the baseline mode and the LTC mode to have a higher peak as hydrogen substitution 

increased.  The peaks of the mixing-controlled combustion phase of both the baseline 

mode and LTC mode decrease as hydrogen substitution increases.  Both the increase of 

the pre-mixed combustion phase peak and the decrease in the mixing-controlled 

combustion phase peak are caused by the method in which hydrogen is injected into the 

engine.  The hydrogen is aspirated into the engine along with the intake air. Thus, once 

the intake valve of a cylinder closes, hydrogen can no longer be added. After the pilot 
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Figure 5.10:  Apparent heat release rate comparison of the baseline mode, LTC mode and
HECC mode with 0% of hydrogen. baseline, LTC and HECC. 
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injection of diesel consumes the hydrogen, there is no more hydrogen available to be 

burned during the main injection.  The engine injected less diesel fuel into the cylinder 

when hydrogen substitution was increased because the engine was set to a fixed load. 
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Figure 5.11:  Apparent heat release rate of baseline mode, with 0%, 

2.5%, 7.5% and 15% hydrogen substitution on an energy basis. 
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Figure 5.13 displays the apparent heat release rate of the HECC mode with 

hydrogen substitution. The increased substitution of hydrogen did not create appreciable 

trends in maximum apparent heat release rate.  The addition of hydrogen did, however, 

advance the crank angle of the maximum heat release from 15.2 oATDC at 0% hydrogen 

to 14 .9 oATDC at 15% hydrogen substitution.  This shift in maximum apparent heat 

release rate is due to the increased presence of hydrogen, causing greater portions of the 

fuel to be premixed at an earlier crank angle. 
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Figure 5.12:  Apparent heat release rate of LTC mode, with 0%, 

2.5%, 7.5% and 15% hydrogen substitution on an energy basis. 
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5.8 Equivalence Ratio 

 Figure 5.14 displays the global equivalence ratio of the three modes tested. The 

equivalence ratios of the modes are fuel lean.  The apparent heat release rate indicated 

that the baseline mode and LTC mode consist mainly of mixing-controlled combustion 

phases, thus, combustion takes place as a diffusion flame with an array of locally fuel 

lean regions and locally fuel rich regions.  According to the apparent heat release rate 

data, the HECC mode is mainly composed of a pre-mixed combustion phase, which 

indicates that the equivalence ratio is likely locally fuel lean through the air-fuel charge.  

The difference between the local equivalence ratios of the modes is used to explain 

exhaust emissions.  
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Figure 5.13:  Apparent heat release rate of HECC mode, with 0%, 
2.5%, 7.5% and 15% hydrogen substitution on an energy basis. 
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 The equivalence ratios of the three modes with 0% hydrogen are practically the 

same when error is taken into consideration. All three modes show a trend of increasing 

equivalence ratio with increasing hydrogen substitution. This trend is to be expected, 

since aspirated hydrogen addition will displace intake air, decreasing the air-fuel ratio.  

5.9 Exhaust Temperature 

 Figure 5.15 displays the exhaust temperatures of the three modes tested. Exhaust 

temperature provides only an indirect indication of the global in-cylinder temperature.  A 

bulk cylinder temperature based on the ideal gas law was not used to calculate 

temperature because the high levels of EGR used in the modes would result in 

erroneously high calculated temperatures, due to the increase in temperature of the intake 

charge and the decreasing of trapped mass [30]. Computational Fluid Dynamics (CFD) 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

Baseline LTC HECC

Eq
ui

va
le

nc
e 

R
at

io

 
Figure 5.14:   Equivalence Ratio of the three modes tested, with ! 0%, " 2.5%, " 5%, "
7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 
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modeling, which is outside the scope of this work, would provide the best indication of 

the combustion temperatures. 

 
 

  Tables 5.5 and 5.6 compare the three modes with and without hydrogen 

substitution.  Hydrogen substitution clearly increased the exhaust temperature of the 

baseline mode and the HECC mode. LTC mode however, showed a modest decrease in 

exhaust temperature, which can be attributed to a shift in laboratory conditions.  
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Figure 5.15:  Exhaust temperature of the three modes tested, with ! 0%, " 2.5%, " 5%, 
" 7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 
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5.10 Gaseous Emissions: NOX 

 The high levels of EGR used in the advanced combustion mode lowered the 

combustion temperature, quenching the production of thermal NO, thus reducing NOX. 

The LTC mode decreased NOX emissions by 89.5% compared to the baseline mode with 

0% hydrogen substitution. The NOX reduction of the HECC mode was less than that of 

the LTC mode, with a 71.2% NOX reduction from the baseline with 0% hydrogen 

substitution. The HECC mode used on the DDC 2.5L engine was not optimized to 

Table 5.5:  Percent difference of exhaust temperature from 0% hydrogen to 2.5%, 5%,
7.5%, 10% and 15% hydrogen substitution on an energy basis for the baseline mode,
LTC mode and HECC mode. Positive values indicate an increase and negative values
indicate a decrease from the baseline. 

Baseline LTC HECC
0% Diff. n/a n/a n/a

2.5% Diff. 0.6 -1.1 0.8
5% Diff. 1.2 -1.3 1.5

7.5% Diff. 1.8 -0.7 0.8
10% Diff. 2.2 -1.1 1.7
15% Diff. 2.9 -0.5 1.5  

 

Table 5.6:  Percent difference of exhaust temperature comparing the baseline mode to 
LTC mode and baseline mode to HECC mode.  Positive values indicate an increase and 
negative values indicate a decrease from the baseline. 

Baseline to LTC % Diff. Baseline to HECC % Diff.
0% 4.1 -2.0

2.5% 2.5 -1.8
5% 1.7 -1.7

7.5% 1.6 -3.0
10% 0.8 -2.6
15% 0.7 -3.4  
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produce low NOX emissions alone, but was rather optimized for simultaneously low NOX 

emissions, low PM emissions and high thermal efficiency. Rail pressure, injection timing 

and EGR% were the variables adjusted in the HECC mode optimization process. 

  The addition of hydrogen produced modest increases in NOX emissions for the 

baseline mode, although hydrogen caused NOX emissions for the LTC mode and HECC 

mode to more significantly increase on the percent difference basis, as given in Table 5.7.  

The high levels of EGR used in the LTC mode and the HECC mode dramatically reduced 

NOX emissions from the baseline mode; hydrogen, however, still increased NOX 

emissions independently of the reductions caused by high levels of EGR.  The effect of 

hydrogen on the LTC mode and the HECC mode can be further explained by examining 

the NO emissions and the NO2 emissions independently. 

#
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Figure 5.16:  Brake specific NOX emissions of the three modes tested, with ! 0%, " 
2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution on an energy basis.#
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#

 
 
 

5.11 Gaseous Emissions: NO 

 According to Figure 5.17 and Table 5.10, the LTC mode and the HECC mode 

reduced NO emissions by ~83% compared to the baseline mode at 0% hydrogen 

substitution.  The NOX and NO emissions together indicate that the HECC mode did not 

decrease NO2 emissions as significantly as the LTC mode.  As seen in Table 5.9,  

Table 5.7:  Percent difference of brake specific NOX emissions from 0% hydrogen to 
2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an energy basis for the baseline 
mode, LTC mode and HECC mode. Positive values indicate an increase and negative
values indicate a decrease from the baseline. 

Baseline LTC HECC
0% Diff. n/a n/a n/a

2.5% Diff. 3.0 -0.1 4.0
5% Diff. 4.6 8.7 13.6

7.5% Diff. 3.4 13.5 18.0
10% Diff. 2.5 8.7 15.7
15% Diff. 1.8 13.2 21.6  

 

Table 5.8: Percent difference of brake specific NOX emissions comparing baseline mode 
to LTC mode and baseline mode to HECC mode.  Positive values indicate an increase 
and negative values indicate a decrease from the baseline. 

Baseline to LTC % Diff. Baseline to HECC % Diff.
0% -89.5 -71.2

2.5% -92.0 -70.4
5% -86.2 -63.2

7.5% -81.2 -58.0
10% -84.4 -59.3
15% -80.1 -53.2  
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hydrogen substitution did not appreciably effect the advanced combustion modes’ NO 

emissions. 
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Figure 5.17:   Brake specific NO emissions of the three modes tested, with ! 0%, "
2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 

Table 5.9:   Percent difference of brake specific NO emissions from 0% hydrogen to
2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an energy basis for the baseline
mode, LTC mode and HECC mode. Positive values indicate an increase and negative
values indicate a decrease from the baseline. 

Baseline LTC HECC
0% Diff. n/a n/a n/a

2.5% Diff. -16.9 -5.2 -1.5
5% Diff. -24.2 1.5 1.8

7.5% Diff. -28.7 -8.0 1.8
10% Diff. -29.7 -3.2 -0.4
15% Diff. -35.0 -7.1 2.9  
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5.12 Gaseous Emissions: NO2 

 Figure 5.18  and Table 5.12 indicate that the LTC mode reduced NO2 emissions 

by 119.2%, while the HECC mode only reduced NO2 emissions 33.8%, in comparison to 

the baseline mode at 0% hydrogen substitution.  The appearance of higher level of NO2 

emissions produced in the HECC mode over the LTC mode is not expected. While the 

major pathway to NO2 formation is the oxidation of NO, the LTC and HECC modes both 

produced similar values of brake specific NO emissions. Upatnieks, Mueller and Martin 

conducted a study on an optically-accessible, heavy-duty DI diesel engine in which 

intake oxygen was diluted via nitrogen as simulated EGR, which resulted in an increased 

NO2 to NO ratio.  The increase of NO2 and decrease of NO was attributed to an increased 

quenching of the NO2-to-NO reaction (Eq. 5.3) due to decreasing flame temperatures 

[55].  

Table 5.10:   Percent difference of brake specific NO emissions comparing baseline mode
to LTC mode and baseline mode to HECC mode.  Positive values indicate an increase 
and negative values indicate a decrease from the baseline. 

Baseline to LTC % Diff. Baseline to HECC % Diff.
0% -82.5 -83.3

2.5% -72.5 -70.1
5% -59.9 -60.6

7.5% -64.4 -56.5
10% -59.2 -57.5
15% -57.7 -49.4  

 

22 ONOONO ()*,(  5.3

446



117 

 

  The observation reported by Upatnieks, Mueller and Martin correspond to the 

NO and NO2 emissions of LTC and HECC modes of this study, although CO2 was used 

instead of nitrogen. The extended pre-mixed combustion phase of the HECC mode can be 

assumed to have lower flame temperature than that of the LTC mode, which has majority 

mixing-controlled combustion phase.   This assumed lower flame temperatures of the 

HECC mode will then further quenching of the NO2-to-NO reaction, thus HECC mode 

produced higher NO2 emissions. 
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Figure 5.18:   Brake specific NO2 emissions of the three modes tested, with ! 0%, "
2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 
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 Hydrogen substitution caused an increase of NO2 emissions in all three modes.  

The increased NO2 in both LTC and HECC modes, however, is counterintuitive since 

NO2’s main creation path is from NO and there was no NO increase measured in 

advanced combustion mode.  The most likely explanation is that the hydrogen present 

caused localized increases in flame temperature, which then created thermal NO.  The 

NO emissions were not measured in the exhaust because the presence of HO2, created by 

hydrogen (see Eq. 4.3) reacted with the NO to form NO2, as given in Eq. 4.2. Kinetic and 

Table 5.11:  Percent difference of brake specific NO2 emissions from the baseline at the 
four modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

  

Baseline LTC HECC
0% Diff. n/a n/a n/a

2.5% Diff. 53.3 26.3 14.7
5% Diff. 68.0 43.2 34.8

7.5% Diff. 70.8 85.9 45.3
10% Diff. 70.2 59.5 43.0
15% Diff. 74.8 83.4 52.0  

 

Table 5.12:  Percent difference of brake specific NO2 emissions comparing baseline to
LTC and baseline to HECC.  Positive values indicate an increase and negative values
indicate a decrease from the baseline. 

Baseline to LTC % Diff. Baseline to HECC % Diff.
0% -119.2 -33.8

2.5% -135.9 -70.8
5% -135.2 -67.1

7.5% -107.1 -60.1
10% -126.6 -61.8
15% -112.4 -57.8  
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CFD modeling is necessary to further explain the discrepancies between the NO2 

emissions of the advanced combustion modes, with and without hydrogen substitution. 

 

 

5.13 Gaseous Emissions: HC 

 The advanced combustion modes increased the HC emissions compared to the 

baseline mode.  The HC emissions of the LTC mode increased by 33% compared to the 

baseline mode, while the HECC mode’s  HC emissions experienced a significant 73% 

increase.  HC emissions are reported to increase in PCCI mode, like the HECC mode, 

caused by overly lean combustion conditions. Wagner, Sluder and coworkers reported 

increased HC when the HECC mode operated at low engine speed and a decrease in HC 

emission under high engine speeds. While the cause for the increase in hydrocarbon was 

not explored by Wagner, Sluder and coworkers the increase was attributed to the mixing 

timescale of the low speed engine operation [39]. 

HHOOH ()*,( 222  5.4

OHNOHONO ()*,( 22  5.5
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 The baseline mode’s HC emissions data appears to contain error in sampling at 

5% hydrogen substitution data.  HC emission equipment is sensitive to cold spots in the 

sampling line, which can cause the hydrocarbons to condense and thus result in erroneous 

emissions. Hydrogen substitution, however, caused an increase of HC emissions at 2.5% 

and 5% of hydrogen substitution for all three of the modes tested. At 7.5% of hydrogen 

substitution, the HC emissions decreased.   Intuitively, an increase of hydrogen fuel and a 

decrease in hydrocarbon fuel should reduce HC emissions. Nonetheless, low percentages 

of hydrogen substitution increased the level of incomplete combustion, thus producing 

unburned hydrocarbon emissions.  
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Figure 5.19:   Brake specific HC emissions of the three modes tested, with ! 0%, "
2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 
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5.14 Gaseous Emissions: CO 

 Figure 5.20  shows the HECC mode CO emissions increased by 105% compared 

to the baseline mode at 0% hydrogen substitution. The LTC mode CO emissions 

increased by 50% compared to the baseline mode at 0% hydrogen substitution.  The 

dramatic increase in CO emissions, specifically in the HECC mode, can be attributed to 

incomplete combustion. The HECC mode operates in a locally fuel lean condition. 

Overly fuel lean combustion will lead to incomplete combustion [16].  High levels of 

EGR also compound the degree of incomplete combustion [30]. The increased level of 

Table 5.13:  Percent difference of brake specific HC emissions from the baseline at the
four modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

Baseline LTC HECC
0% Diff. n/a n/a n/a

2.5% Diff. 11.4 15.2 10.9
5% Diff. 32.6 9.5 11.3

7.5% Diff. 4.4 -0.7 3.7
10% Diff. -4.0 1.2 4.4
15% Diff. -8.2 -9.0 -1.9  

 

Table 5.14:  Percent difference of brake specific HC emissions comparing baseline to
LTC and baseline to HECC.  Positive values indicate an increase and negative values
indicate a decrease from the baseline. 

Baseline to LTC % Diff. Baseline to HECC % Diff.
0% 33.0 73.9

2.5% 36.8 73.5
5% 9.9 54.7

7.5% 28.0 73.3
10% 38.0 81.0
15% 32.2 79.3  
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CO emissions in the LTC mode was also caused by incomplete combustion due to the 

high levels of EGR. 

 Hydrogen substitution caused a significant decrease in CO emissions in all three 

modes tested, as can be seen in Tables 5.15 and 5.16. The increased levels of hydrogen 

may have formed HO2 radicals, which in turn attacked the CO.  The reduction of air due 

to hydrogen aspiration decreases the amount of localized air-fuel pockets which are 

overly fuel lean leading to incomplete combustion and CO formation.   
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Figure 5.20:   Brake specific CO emissions of the three modes tested, with ! 0%, "
2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 
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5.15 Gaseous Emissions: CO2 

CO2 emissions increased in the advanced combustion modes over the baseline 

modes, due to the increased levels of CO2 added in the form of EGR.   The CO2 

emissions of both LTC and HECC modes nearly overlap, as can be seen in Table 5.18. 

Even though both of the advanced combustion modes utilized ~50% EGR, the overlap is 

unexpected because the carbon emissions pathways and the modes’ fuel efficiencies are 

different.  

Table 5.15:  Percent difference of brake specific CO emissions from the baseline at the 
four modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

Baseline LTC HECC
0% Diff. n/a n/a n/a

2.5% Diff. -0.3 -4.9 -3.7
5% Diff. -8.2 -13.4 -11.3

7.5% Diff. -16.4 -13.0 -17.0
10% Diff. -18.8 -21.4 -18.8
15% Diff. -26.0 -25.9 -29.4  

 

Table 5.16:  Percent difference of brake specific CO emissions comparing baseline to
LTC and baseline to HECC.  Positive values indicate an increase and negative values
indicate a decrease from the baseline. 

Baseline to LTC % Diff. Baseline to HECC % Diff.
0% 50.5 105.7

2.5% 46.2 103.2
5% 45.6 103.4

7.5% 53.7 105.3
10% 48.1 105.7
15% 50.6 103.2  
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 Hydrogen substitution reduces brake specific CO2 emissions in all three modes. 

The substitution of hydrogen fuel for hydrocarbon fuel reduces the availability of carbon 

to produce CO2. Table 5.17 shows that CO2 is reduced more aggressively in the baseline 

mode as the EGR level was much lower than the advanced combustion modes.  
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Figure 5.21:    Brake specific CO2 emissions of the three modes tested, with ! 0%, "
2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 

Table 5.17:  Percent difference of brake specific CO2 emissions from the baseline at the 
four modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease
from the baseline. 

Baseline LTC HECC
0% Diff. n/a n/a n/a

2.5% Diff. -2.1 -3.3 -0.9
5% Diff. -3.6 -5.9 -4.0

7.5% Diff. -6.0 -5.1 -3.9
10% Diff. -8.0 -7.7 -6.4
15% Diff. -12.9 -8.8 -8.5  
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5.16 Particulate Matter Emissions: BG-1 

 Particulate matter is mainly created in the diffusion flame of the mixing-

controlled combustion phase, as is the case with the baseline mode in Figure 5.22.  The 

PM is formed in fuel-rich zones of the flame, where fuel is pyrolyzed. The LTC mode 

uses the same injection strategy as the baseline combustion mode, thus the LTC mode’s 

combustion is also dominated by the mixing-controlled combustion phase.  However, the 

LTC mode utilizes ~50% EGR, which lowers the combustion temperature by absorbing 

heat. The reduction in combustion temperature lowers the rate at which the PM is 

oxidized. Furthermore, the reduction of oxygen with the increase of EGR reduced the 

oxygen available to oxidize soot formed in the diffusion flame.   Thus, the PM in the 

LTC mode is 46% higher then the baseline mode.  

 The combustion of the HECC mode is dominated by the pre-mixed combustion 

phase. The pre-mixed air-fuel charge combusts locally fuel-lean at lower temperatures 

compared to a diffusion flame.  The HECC mode also utilizes ~50% EGR, which 

Table 5.18:  Percent difference of brake specific CO2 emissions comparing baseline to 
LTC and baseline to HECC.  Positive values indicate an increase and negative values
indicate a decrease from the baseline. 

Baseline to LTC % Diff. Baseline to HECC % Diff.
0% 56.5 55.9

2.5% 55.4 57.0
5% 54.4 55.5

7.5% 57.3 57.8
10% 56.8 57.4
15% 60.2 59.9  

 

455



126 

 

decreases combustion temperatures further.  The low combustion temperatures and the 

low fuel equivalence ratio of the HECC mode shifts the mode outside of the PM 

formation peninsula of Akihama and coworkers’ local equivalence ratio vs. local 

temperature model [40].  The rate of oxidation is reduced by lowered combustion 

temperatures, but so little PM is formed that the HECC mode yields lower PM then the 

baseline or LTC modes.  

 Hydrogen caused an increase of PM in the three modes tested.   The aspiration of 

hydrogen reduced the oxygen intake to the engine, thus reducing the oxygen available to 

oxidize the soot formed in the rich spray flame of the baseline mode and LTC mode.   

The increase of PM in the HECC mode was less substantial, as seen in Table 5.19.   The 

long ignition delay in the HECC mode allowed the hydrogen more time to mix with the 
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Figure 5.22:  Brake specific PM emissions of the three modes tested, with ! 0%, "
2.5%, " 7.5%, and " 15% hydrogen substitution on an energy basis. 
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diesel fuel and air. The premixed charge contained lower concentrations of localized 

hydrogen, thus reducing the spike in local temperatures.  

 

 
 
 

 
 

5.17 Particulate Matter Emissions: SMPS 

  The SMPS was used to further analyze the PM emissions. The SMPS data 

compares the concentration in number of PM particles by volume to the diameter of the 

sampled particles.  The SMPS data was taken using three different settings: sampling by 

Table 5.19:  Percent difference of brake specific PM emissions from the baseline at the
four modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease 
from the baseline. 

Baseline LTC HECC
0% Diff. n/a n/a n/a

2.5% Diff. 4.5 3.9 25.5
7.5% Diff. 25.2 5.9 11.6
15% Diff. 31.4 7.8 14.2  

 

Table 5.20:  Percent difference of brake specific PM emissions comparing baseline to
LTC and baseline to HECC. Positive values indicate an increase from the baseline, while
negative values indicate a decrease. 

Baseline to LTC Baseline to HECC
0% Diff. 46.0 -80.7

2.5% Diff. 45.4 -62.3
7.5% Diff. 27.2 -91.9
15% Diff. 22.8 -94.7  
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bypassing the thermal denuder, sampling through the thermal denuder at 30oC, and 

sampling through the thermal denuder at 300oC.    

 The advanced combustion modes at 0% hydrogen substitution were not limited by 

hydrogen expenditure and were more thoroughly studied using the SMPS. Figure 5.23, 

Figure 5.24 and Figure 5.25  compare the baseline mode, LTC mode and HECC mode 

when sample bypassed the thermal denuder and flowed through the thermal denuder at 

30oC and at 300oC. The diluted exhaust sample contained PM made up of a solid carbon 

fraction (soot) and organic fraction.   

 The organic fraction is composed of unburned hydrocarbons that conglomerated 

on the soot particles. The LTC mode and the HECC mode had increased levels of 

unburned hydrocarbons, which could indicate higher levels of organic fraction on the 

soot.  Figure 5.23 shows that when the sample bypasses the thermal denuder, the LTC 

mode yields a higher concentration of particles than the baseline mode and the HECC 

mode’s concentrations are quite reduced.  The mass based PM data provides the same 

trend.   
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Figure 5.24 shows data for samples flowing through the thermal denuder at 30oC 

for 0% hydrogen substitution. The concentration of particles is significantly reduced with 

the sample flowing through the thermal denuder.  The baseline mode’s concentration 

unexpectedly increased over the LTC mode when the sample passed through the 30oC 

thermal denuder, which is set at that temperature to avoid removing the organic fraction. 

The thermal denuder is, however, a cylinder full of activated carbon which filters and 

absorbs the organic fraction from the PM. The LTC mode contained a larger organic 

fraction of PM than that of baseline mode, which accounts for the shift in concentration 

seen in Figure 5.24. 
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Figure 5.23: SMPS Bypass comparison of the baseline mode, LTC mode and HECC mode
with 0% of hydrogen. baseline, LTC and HECC. 
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 Figure 5.25  displays the PM concentrations of the three modes tested, with the 

sample flowing through the thermal denuder at 300oC for 0% hydrogen substitution. The 

organic fraction of the PM is completely stripped away and only soot remains, due to the 

thermal denuder being set to 300oC. Note that the concentrations of all three of the modes 

are dramatically reduced.  
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Figure 5.24:   SMPS thermal denuder at 30oC of the baseline mode, LTC mode and 
HECC mode with 0% of hydrogen. baseline, LTC and HECC. 
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While the HECC mode was being explored on the DDC 2.5L engine, the SMPS 

was used to generate expedient PM data.  In the exploration process, the injection timing 

was adjusted to locate where the engine operated at simultaneously low NOX emissions 

and low PM emissions while also maintaining fuel economy. In the exploration process, 

the engine was found to produce large quantities of nano-particles at 2o BTDC.  

Figure 5.26 compares the HECC mode used at 4o BTDC to the mode that produced the 

nano-particles at 2o BTDC.  The PM nano-particles are entirely composed of the organic 

fraction. As can be seen in Figure 5.26, the thermal denuder removes the nano-particles 

and an ultra-low soot concentration remains.  These findings are intended to be explored 

in future work.  

 

 
   

0

1 105

2 105

3 105

4 105

5 105

6 105

7 105

8 105

1 10 100 1000

C
on

ce
nt

ra
tio

n 
(#

/c
m

³) 
 

Diameter (nm)

Figure 5.25:  SMPS Thermal Denuder at 300oC at 0% hydrogen. baseline, 
LTC and HECC. 

461



132 

 

5.18 Brake Specific Fuel Consumption 

Brake specific fuel consumption of the LTC mode compared to the baseline mode 

increased by an 0.2%.  The fuel efficiency of the HECC mode, however, increased by 

3.6% over the baseline.  Brake specific fuel consumption increased in all three of the 

tested modes with an increase of hydrogen substitution.  It should be noted that the 

aspiration of hydrogen into the air intake displaced air. Diminution in air, the working 

fluid of the engine, will reduce volumetric efficiency and fuel economy. 
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Figure 5.26: HECC mode exploration at 1800 rpm, 4.2 bmep and 50% EGR with rail
pressure at 490 bars. TD 30oC at 2 BTDC,     TD 300oC at 2 BTDC, 
TD 30oC at 4 BTDC and   TD 300oC at 4 BTDC. 
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Figure 5.27:  Brake specific fuel consumption of the four modes tested, with ! 0%, "
2.5%, " 5%, " 7.5%, " 10% and " 15% hydrogen substitution on an energy basis. 

Table 5.21:  Percent difference of brake fuel consumption from the baseline at the four
modes tested with 0%, 2.5%, 5%, 7.5%, 10% and 15% hydrogen substitution on an
energy basis. Positive values indicate an increase and negative values indicate a decrease 
from the baseline. 

Baseline LTC HECC
0% Diff. n/a n/a n/a

2.5% Diff. 0.3 -1.1 0.8
5% Diff. 0.6 0.8 1.3

7.5% Diff. 1.1 -0.8 2.1
10% Diff. 1.4 3.6 2.4
15% Diff. 2.0 1.6 3.4  
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5.19 Summary 

 The DDC 2.5L engine operated in a PCCI mode referred to here as HECC.  The 

mode was found at 1800 rpm at 25% of maximum output, with  a single injection that 

was set at -4 oATDC, ~50%  of combined engine produced EGR and simulated EGR and 

a common rail pressure of 490 bar. Along with the HECC mode, an intermediate mode 

(LTC mode) utilized ~50% EGR, with all other operation parameters studied held at 

default.   Compared to the default baseline operation at the given speed and load, the 

HECC mode reduced brake specific NOX emissions by 72.1%, reduced brake specific 

NO emissions by 83.2%, reduced brake specific NO2 emissions by 33.8%, increased 

brake specific HC emissions by 73.9%, increased brake specific CO emissions by 

105.6%, increased brake specific CO2 emissions by 55.9%, reduced brake specific PM 

emissions by 80.7%, and reduced brake specific fuel consumption by 3.6%.  These 

results correspond to those achieved by Wagner, Sluder and coworkers at Oak Ridge 

Nationals Laboratory, where the HECC mode was developed.  Major operational 

parameters and emissions results of the three modes tested are given in Table 5.23. 

Table 5.22:  Percent difference of brake specific fuel consumption comparing baseline to
LTC and baseline to HECC.  Positive values indicate an increase and negative values
indicate a decrease from the baseline. 

Baseline to LTC % Diff. Baseline to HECC % Diff.
0% 0.2 -3.6

2.5% -1.2 -3.1
5% 0.5 -2.9

7.5% -1.7 -2.6
10% 2.3 -2.6
15% -0.2 -2.2  
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 On an energy basis, hydrogen was substituted for diesel fuel at 0%, 2.5%, 5%, 

7.5%, 10%, and 15% by aspirating the hydrogen into the engine’s intake air, after the 

turbocharger.  The effect of hydrogen substitution on the advanced combustion mode, 

HECC, was similar in results to the study in which hydrogen was substituted for diesel 

fuel in conventional combustion modes.  In general, the effect of hydrogen substitution 

on the HECC mode was to increase brake specific NOX emissions from 4.0% to 21.6%, 

which was a result of the increase in combustion temperature caused by hydrogen.  

Hydrogen had little effect on the brake specific NO emissions of the HECC mode unlike 

in the conventional modes where an increase of hydrogen was seen to decrease NO.   The 

brake specific NO2 emissions increased trend from 14.7% to 52.0%, with an increase of 

hydrogen. The brake specific HC emissions first increased with 2.5% and 5% then 

decreased from 7.5% to 15% hydrogen substitution.   The brake specific CO emissions 

decreased trend from 3.7% to 29.4%, with an increase of hydrogen, due to more complete 

Table 5.23:  Major operational parameters and emissions result of the three modes tested.

Baseline LTC HECC
EGR Total (%) 11 48 50

Engine produce EGR (%) 11 16 16
Simulated EGR (%) none 32 34

BSFC (g/kW.hr) 253 253 244
NOx (g/kW.hr) 1.74 0.68 0.79
PM (g/kW.hr) 0.98 1.57 0.42

THC (g/kW.hr) 0.76 1.06 1.65
Intake Temp (C) 59 70 75

ExhTemp (C) 342 357 336
Main Timing (oBTDC) -2.9 -2.9 4.0
Pilot Timing (oBTDC) 17.4 17.4 none

Rail Pressure (bar) 450 450 490  
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combustion. The brake specific CO2 emissions had a decreasing trend from 0.9% to 

8.5%, with an increase of hydrogen, due to a decrease of hydrocarbon input to the engine.  

The brake specific PM emissions had an increasing trend from 25.5% to 14.2%, with an 

increase of hydrogen, due to the increase in localized combustion temperature. The brake 

specific fuel consumption had an increasing trend from 0.8 % to 3.4%, with an increase 

of hydrogen, due to the reduction of intake air. 

 Hydrogen increased the amount of premixed fuel added to the HECC mode, 

which was hoped to further enhance this PCCI mode.   The reductions on the HECC 

modes emissions with hydrogen substitution were modest. As legislative emission 

restrictions on diesel engines increase advanced combustion modes will continue to be 

studied as a part of a solution. In this study, hydrogen substitution has been demonstrated 

in an engine running an advanced combustion mode up to 15% hydrogen fuel 

substitution, without penalty. Further benefits can be projected when hydrogen is utilized 

in an engine optimized for PCCI combustion. 
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Chapter 6 
 

Conclusion 

6.1 Conclusion 

The aim of the studies presented in this Thesis were to examine  the benefits of 

aspirating small quantities of hydrogen gas into the air intake of a diesel engine, while the 

engine was running in conventional combustion modes and advanced combustion modes.   

The following conclusions were drawn from the experimental worked conducted on the 

conventional combustion modes.  

! Aspirating hydrogen into the air intake of an unmodified diesel engine will result in 

retarded injection timing, based on the engine’s ECU injection timing map, given the 

reduction of diesel fuel.  Significant changes in emissions will occur due to the 

retarding of injection timing which can be repeated by manually retarding the 

injection timing without aspirating hydrogen.  

! Depending on engine operation parameters, up to 30% of the fuel energy demand of a 

diesel engine can be from aspirated hydrogen. At 35%, the engine will choke from 

lack of oxygen.  

! Hydrogen substitution for diesel fuel, by aspiration, resulted in a modest increase in 

brake specific NOX emissions. However, hydrogen substitution results in a significant 

decrease of brake specific NO emissions and a significant increase of brake specific 
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NO2 emissions.  The NO/NO2 trade off caused directly from hydrogen substitution 

can be advantageously used in after treatment systems.  

! Hydrogen substitution for diesel fuel, by aspiration, resulted in a modest decrease in 

brake specific CO emissions. 

! Hydrogen substitution for diesel fuel, by aspiration, resulted in a modest decrease in 

brake specific CO2 emissions. 

! Hydrogen substitution for diesel fuel, by aspiration, resulted in a modest decrease in 

brake specific HC emissions at high load operation and a modest increase at low load 

operation. 

! Hydrogen substitution for diesel fuel, by aspiration, resulted in a decrease in brake 

specific PM emissions at high speed operation and an increase at low speed operation. 

! Hydrogen substitution for diesel fuel, by aspiration, resulted in an increase in brake 

specific fuel consumption.  This increase in inherently due to the reduction of air via 

hydrogen substitution.  

The following conclusions can be drawn from the experimental worked conducted on the 

advanced combustion modes. 

! The advanced operation condition known as HECC was achieved on Penn State’s 

Detroit Diesel 2.5L TD DI-4V using simulated EGR.  The resulting emissions 

corresponded to those of Wagner, Sluder and coworkers at Oak Ridge National 

Laboratory. 
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! The coefficient of variance of the indicated mean effective pressure was not 

affected by the substitution of hydrogen, beyond what can be achieved through a 

repeatability study without using hydrogen.  

! The high concentration of EGR used in the advanced combustion modes reduced 

the brake specific NO emissions, such that hydrogen substitution had no reducing 

effect.  

! Hydrogen substitution for diesel fuel, by aspiration, resulted in an increase in 

brake specific NO2 emissions, resulting in an overall increase of NOX. 

! Hydrogen substitution, by aspiration, for the advanced combustions modes caused 

trends similar to the conventional combustion modes for the brake specific HC, 

CO, CO2 and PM emissions at low speed and low load conditions. 

6.2 Future Work 

The studies reported in this Thesis have generated questions to be answered in 

future work. The following areas of future work are recommended based on experimental 

worked conducted conventional combustion modes. 

 

! In this study, the injection timing of diesel fuel was not optimized for the addition of 

hydrogen through aspiration. The engine was operated with the engine’s default 

injection timing locked.  Increased emission benefits may be possible through the 

optimization of diesel injection timing.  
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! Aspiration of hydrogen into the air intake of a diesel engine is an inexpensive and 

simple method to retrofit an engine to combust hydrogen. This study has shown 

hydrogen substitution, via aspiration, to be limited to 30% hydrogen on an energy 

basis, before the engine is choked by lack of oxygen. Direct injection of pressurized 

hydrogen into the engine cylinders would allow for the majority of the fuel energy 

needed to operate a CI engine to come from hydrogen.  A minimal amount of diesel 

fuel would be required to ignite the hydrogen as a pilot fuel. According to literature, 

higher percentages of hydrogen substitution yield emissions benefits. 

 

The following recommendations for future work are based on experimental 

worked conducted on the advanced combustion modes. 

 

! Combustion simulation and Computational Fluid Dynamics (CFD) modeling would 

provide insight into the localized concentrations of hydrogen in the pre-mixing 

combustion phase of the HECC mode.  Furthermore, such modeling would provide 

accurate indication of local combustion temperatures which would aid in the 

explanation of the resulting emissions.  

! The SMPS indicated the formation of nano-particles formed from the organic fraction 

of PM.  The nano-particles were found while searching for the HECC mode at -2 

oATDC.  When the thermal denuder was used to burn off the organic fraction of PM, 

trace levels of soot remained. This data indicates the possibility of nearly eliminating 

soot in a further optimized HECC mode.  
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! Simulated EGR constituted the majority of the EGR concentration needed to operate 

in the advanced combustion modes.  Refinement of the EGR loop and a rebuild of the 

engine should allow the engine to run in the advanced combustion modes using actual 

EGR.   A comparison between the emissions of the HECC mode entered using 

simulated EGR and actual EGR would be insightful. 
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Appendix A 
 

Brake Specific Calculations 

 
A.1 Brake Specific Calculations 

In subsequent equations the method used to convert from part-per-million (ppm) 

emissions into brake specific emissions for the cases of CO is given.  The NOX, NO, 

CO2, NO2, HC and PM emissions were converted to brake specific units using an 

identical method.  

Where: 
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Appendix B 
 

Error Analysis 

B.1 Error Analysis 

 The error analysis method used in this Thesis was based on the error analysis 

method used by Hess[12].  Error is characterized in four main classes, instrument 

measurement errors, systematic errors, personal errors and random errors. Instrument 

measurement errors, also referred to as zeroth order uncertainty, are associated with the 

uncertainty that arises from the precision of measurement equipment. Systematic errors, 

also referred to as first order uncertainty, are associated with the uncertainty that arises 

from the accuracy of measurement equipment.  Personal error is due to the judgment of 

an observer while recording the data. Random error is the error that remains after the 

instrument measurement errors, systematic errors, and personal errors are accounted for. 

The overall combination of all error is characterized as the Nth order uncertainty which 

can be quantified as the root-sum-square of the fore mentioned uncertainties [12, 56].  

 The value of error can be reported as absolute error, relative error or percentage 

error. The absolute error is the value given by the difference between the measured 

results and the actual results.  The relative error is calculated by dividing the absolute 

error by the mean of the measured value. The percentage error is defined by multiplying 

the relative error by 100%. 
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 Data acquisition was conducted under steady-state, with instrumentation 

measuring speed, load, temperatures, pressures, mass air flow, fuel mass, and emissions 

from the AVL bench, over a 15 minute sampling period, with a data point taken every 10 

seconds. Though the engine operated at steady state, the AVL emission bench was placed 

in a standby mode until data sampling was enabled.  The individual analyzers which 

comprise the bench often required an unpredictable period of time to stabilize.  Thus, 

selections of 25 sequential data points were selected, those points having the lowest 

standard deviation of the recorded data.  The points were then analyzed using the Student 

t-test to calculate the error between the 25 data points sampled at steady-state, as given in 

Eq. B.1. The Student t-test multiple used was 1.96, due to the 25 samples taken, based on 

a 95% confidence interval. 

Where: 

tA/2,v, Student t-test multiplier (1.96) 

n, number of data pints (25) 

B , Mean 

3 , Standard deviation 

  

 The gaseous and PM emissions were the data of most concern in this Thesis. All 

other data have been taken used to better explain the resulting gaseous and PM emissions 

results. Thus, the gaseous and PM emissions data points were rigorously analyzed and 
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t
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presented with error bars.    The instrumental and systematic errors which affected 

gaseous and PM emissions measurements are presented in Table B.1, Table B.2  

and Table B.3.   

 

  

Table B.1:  Major sources of instruments error which affect gaseous emission results in
percent error. 

Abbreviation Equipment Percent error [%]
HC%_Inst HC analyzer error of linearization 1.570

NOX%_Inst NOX analyzer error of linearization 0.308
NO%_Inst NO analyzer error of linearization 0.308
NO2%_Inst NO2 analyzer error of linearization 0.308
CO%_Inst CO analyzer error of linearization 0.909
CO2%_Inst CO2 analyzer error of linearization 0.714
FCE%_Inst Fuel scale 0.136
RME%_Inst Engine rotational speed measurement 0.111  

 

Table B.2:  Major sources of instruments errors which affect PM emission results in
percent error. 

Abbreviation Equipment Percent error [%]
BME%_Inst BG-1 measurement 3.441
PSE%_Inst PM scale 0.001
FCE%_Inst Fuel scale 0.136
RME%_Inst Engine rotational speed measurement 0.111  

 

Table B.3:  Major sources of systematic error which affect gaseous and PM emission
results in percent error. 

Abbreviation Measurements Percent error [%]
ERSM%_sys Engine rotational speed measurement 0.032
ELM%_sys Engine load measurement 0.227

MAFM%_sys Mass air flow measurement 0.739
FM%_sys Fuel measurement 0.812  
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Hess explains that the proper method for combining instrument and systematic 

errors for brake specific calculations in which multiplication occurs is to root-sum-square 

(RSS) the error in the percent error form.  By doing so only large values of error are 

necessary to consider, since the RSS calculation will not be affected by errors  which are 

5 times smaller [12]. An example of the RSS calculation for gaseous NOx is given in 

Eq. B.2. 

The resulting percent error value was then divided by 100% to be converted back 

to a relative error value, as in Eq. B.3  

The error bars were then finally calculated by converting the relative error into 

absolute error by multiplying by the mean value of the given brake specific value, as in 

Eq. B.4. 
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Appendix C 
 

Repeatability Study 

C.1 Repeatability Study 

 To confirm the integrity and reliability of the data presented in the thesis, a 

repeatability study was preformed. The repeatability study consisted of three separate 

operations of the DDC 2.5L engine at 1800 rpm at 25% of maximum output with out 

hydrogen aspiration.  Exhaust, intake air and oil temperatures noted in the data to confirm 

the consistency of engine operation condition.  The indicators of the repeatability study 

are the gaseous emissions data in brake specific units, which are presented in Table C.1. 

 

The repeatability study confirms the repeatability of the data in this thesis by 

comparing the standard deviation of the three trials to the standard deviation of the engine 

operating at 1800 rpm and 25% of maximum output with 0% and 15% hydrogen 

substitution on an energy basis, given in Table C.2.  

Table C.1: Repeatability study of the DDC 2.5L engine operating at 1800 rpm and 25% of
maximum output on three different trials presented by standard deviation.  

Speed 
(rpm)

Power 
(Kw)

Exhaust 
(oC)

Intake Air 
(oC)

Oil 
(oC)

HC
(g/kW.h)

NOX

(g/kW.h)
NO

(g/kW.h)
NO2

(g/kW.h)
CO 

(g/kW.h)
CO2

(g/kW.h)

7/2/2007 12pm 1798.09 15.66 332.52 22.40 93.07 - 1.93 1.51 0.42 2.16 844.97
8/14/2007 8am 1805.27 15.67 339.47 21.48 91.47 0.83 1.93 1.50 0.42 2.28 838.26
8/14/2007 5pm 1805.14 15.66 342.30 21.89 91.70 0.76 1.88 1.48 0.40 2.21 845.21

Standard Deviation 4.11 0.01 5.04 0.46 0.87 0.05 0.03 0.01 0.01 0.06 3.94

Trial
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 The 15% increase of hydrogen substitution seen in Table C.2 indicates an 

increase in the standard deviation compared to the standard deviation of the repeatability 

study, in all emission except for HC.  The difficulties in recording HC emissions were 

discussed in the results sections of this thesis.  The repeatability study shown here added 

confidence to the data presented in this thesis, even though hydrogen substitution resulted 

in modest changes in emission data. 

 

Table C.2:  Comparison of the DDC 2.5L engine at 1800 rpm and 25% of maximum
output with 0% and 15% hydrogen substitution on an energy basis by standard deviation.

Hydrogen
Speed 
(rpm)

Power 
(Kw)

Exhaust 
(oC)

Intake Air 
(oC)

Oil 
(oC)

HC
(g/kW.h)

NOX

(g/kW.h)
NO

(g/kW.h)
NO2

(g/kW.h)
CO 

(g/kW.h)
CO2

(g/kW.h)
0% 1805.14 15.66 342.30 21.89 91.70 0.76 1.88 1.48 0.40 2.21 845.21
15% 1,806.14 15.69 352.21 21.49 91.67 0.70 1.91 1.04 0.87 1.70 742.79
STD 0.70 0.02 7.01 0.29 0.02 0.04 0.02 0.31 0.34 0.36 72.42
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ABSTRACT 

 The scope of this investigation is to explore strategies to reduce NOx emissions 

from compression ignition engines.  Two methods are presented in this collection of 

studies: 1) NOx reduction accomplished through a change in fuel formulation, 

specifically through a change in the saturated fuel carbon chains of biodiesel; and 2) NOx 

reduction accomplished through a mixed mode combustion process utilizing a fumigated 

fuel and a pilot injection of diesel fuel. 

 In the first study, a light duty diesel engine was used to investigate the change in 

saturation of a biodiesel fuel and its impact on NOx emissions.  Previous studies have 

shown that a reduction in the iodine value of a biodiesel fuel produces a reduction in NOx 

emissions.  The iodine value of the fuel is reduced through the saturation of the C18 

molecules via hydrogenation of biodiesel fuel.  Experiments were performed at several 

speeds and loads without exhaust gas recirculation (EGR), and a NOx reduction with the 

hydrogenated diesel fuel was observed.  For all the modes studied, the NOx emission was 

higher for the biodiesel and lower for the hydrogenated biodiesel in comparison to the 

ultra low sulfur diesel (ULSD) fuel.  Results from the calculation of the adiabatic flame 

temperature shows that the results could be explained by the difference in adiabatic flame 

temperature of the fuel, thus influencing the prompt NOx contribution in addition to the 

thermal contribution.  Since the adiabatic flame temperatures are similar for the 

hydrogenated biodiesel and the ULSD, yet the NOx reduction with the hydrogenated 

biodiesel is much lower than the USLD levels, another explanation for the reduction is 

suggested:  the additional prompt NOx contribution from the change in fuel chemistry. 
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 The second study investigated the NOx reductions which could be achieved with 

a mixed mode combustion process utilizing a fumigated fuel and a pilot injection of 

diesel fuel.  In this research, the fumigated fuel was dimethyl ether (DME) and 

DME/Methane blends, while the pilot injection fuel was ULSD.  Several sets of 

experiments were performed to study the ignition of the fumigated fuel, and its impact on 

the NOx emissions.  In the first set of experiments, the DME concentration was spanned 

over a range of 15 to 44% energy equivalent of the total fuel requirement.  An 

approximately 20% reduction in NOx emissions was observed up to 35% DME energy 

equivalent.  As the energy equivalent increased above 35%, the NOx emissions began to 

increase with the increase in the peak of the high temperature heat release (HTHR).  

While the NOx emissions decreased, there was also a significant shift in the NO to NO2 

conversion for all DME fumigation test conditions in comparison to the baseline diesel 

cases.  For 25% DME energy equivalent, the injection timing of the pilot diesel was 

retarded and a reduction in the NOx emissions was observed.  The low temperature heat 

release (LTHR) and the HTHR remained constant in magnitude and timing while the 

injection timing of the pilot diesel was retarded.  The peak pressure for the premixed and 

diffusion portions merged, with increasing premixed DME combustion.  With retarded 

injection timing, NOx reduction occurred as a result of the decrease in the bulk cylinder 

temperature and in the combustion duration before cylinder quenching from the exhaust 

stroke.  In the second set of experiments, the intake air temperature was increased to 

study the impact on NOx and the mixed mode combustion process.  While the amount of 

DME residual in the exhaust decreased along with the total hydrocarbon and CO 

emissions, the NOx emissions increased with increasing bulk cylinder temperature.  For 
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the speed and load used in this experiment, there was enough fuel and compression to 

combust most of the fuel, yet not enough to complete the combustion of the unburned 

hydrocarbons and CO.  While air heating shifted the stoichiometry of the fuel and air 

mixture by reducing the density of air, the heating led to increased NOx with reduction in 

the NO to NO2 conversion.  This may indicate that the system was above the low 

temperature range for this conversion to occur.  In the third set of experiments, a small 

amount of Methane was introduced into the system to study the impact on the cetane 

number of the fumigated fuel.  On a brake specific power basis, the Methane addition 

reduced the NOx emissions more than with only DME, however the NO to NO2 

conversion was lower.  NOx emissions were further reduced by retarding the injection 

timing, but increased with increasing intake air temperature.  Through the use of the 

intake air heating, it was observed that the ignition of the DME/Methane blend was 

advanced with a smaller LTHR and a higher HTHR.  While NOx emissions increased 

with the increase in bulk cylinder temperature, only the NO emissions increased while 

NO2 remained constant.  Gaseous emissions analysis showed that the heating caused 

greater conversion of the Methane and DME during combustion.   
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Chapter 1 
 

Introduction 

The reduction of oxides of nitrogen emission (NOx) from compression ignition 

engines is an important objective due to environmental and human health concerns 

particularly in areas that are ozone non-attainment zones (e.g., Philadelphia, Houston).    

In addition, NOx emissions from engines and vehicles are legislated and regulated around 

the world, with the emissions regulations continually tightening in the upcoming years.  

Thus, many methods that can reduce those emissions from in-use compression ignition 

engines and vehicles are being considered as options.   

There are various methods that can be used to reduce NOx emissions from a 

compression ignition engine.  Two of these methods were studied as a collection of 

research presented in this thesis.  In particular, NOx reductions can be achieved: 1) 

through a change in the formulation of biodiesel fuel by hydrogenation of the fuel, and 2) 

through a change in the mode of combustion with the use of a fumigated fuel.  Some of 

these studies have been previously published, and are contained within this thesis in part 

or in whole.   

The first study involves the effect of biodiesel fuel formulation on NOx 

emissions.  Specifically, a NOx increase has been demonstrated widely when using a soy-

based biodiesel as a fuel in a compression ignition engine.  In the literature, it is 

suggested that NOx emissions from different types of biodiesel are related to a change in 

the iodine value of the fuel.  The hypothesis of this research is that the reduction in iodine 
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value of the fuel, which in turn is a change in the saturation of the C18 chain of the fuel, 

leads to a reduction in NOx emissions.  A set of tests were performed in a light duty 

diesel engine running with its normal fuel injection timing and without EGR over various 

engine speed and load points.  In total, 2 engine speeds and 2 different loads were tested.  

The normal fuel injection timing includes a pilot injection prior to a main injection.  

Based on the preliminary studies, it was expected that the hydrogenated biodiesel would 

show a reduction in the NOx emissions from this particular engine, but it was unclear 

what the magnitude would be because the previous work had been completed with the 

EGR present.  This research provides new insight into the impact on exhaust emissions 

from a change in the chemical composition of the biodiesel fuel while using a pilot and 

main fuel injection strategy in a light duty diesel engine.  It would be beneficial to be able 

to use an alternative fuel in a diesel engine that would produce less NOx emissions than 

diesel fuel, which would enhance the motivation to move to non-petroleum sources of 

fuel.   

The second study involved modifying the combustion process by introducing a 

gaseous fuel into the intake air system.  This method is being defined as a “mixed mode” 

combustion.  The engine is allowed to operate in its usual fashion with a diesel fuel pilot 

injection while another gaseous fuel is being fumigated into the intake air system.  For 

this research, the fumigation fuel was dimethyl ether (DME).   The engine was operated 

at a single speed and load, while the feedrate of the fumigated fuel was varied to study 

the effect of the fumigated fuel on the combustion process and thus the gaseous 

emissions.  The engine test stand was modified to include an intake air heating system to 

study the effect of temperature on the ignition behavior of the fuels.  The hypothesis of 
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this research is that a fumigated low ignition temperature fuel can modify the typical 

NOx formation paths in diesel combustion and thus reduce the total NOx emissions.  The 

studies involved several experiments at one specific engine speed and load.  First, the 

DME concentration in the engine mode was explored to determine the minimum NOx 

emissions that could be achieved at a particular single pulse injection timing.  In addition, 

injection timing was modified at this particular fuel concentration to observe the effect of 

combustion timing on the emissions.  Next, intake air heating was used to further study 

the ignition effect of the DME on the overall combustion process and exhaust emissions.  

Finally, a short study was performed to blend Methane into the fumigated DME 

concentration and to determine if further NOx reductions could be achieved with this 

configuration, and how the ignition behavior of the charge was altered.  Based on the 

preliminary study, it was expected that there would be some NOx reduction with the 

DME fumigated into the engine.  The intake air heating is expected to further enhance the 

ignition of the DME and demonstrate how an engine configuration could be changed ( i.e. 

higher compression) to better utilize DME in the engine.  While utilization of natural gas 

and Methane in a compression ignition engine is highly desired because of its wide 

availability, mixing it with DME and testing it in the engine provides insight into the 

impact of ignition behavior in reducing the NOx emission in the mixed mode combustion 

system, which is presently unclear. 
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Chapter 2 
 

Literature Review  

2.1 Motivation 

The motivation for researching NOx reduction strategies stems from several 

factors.  Primarily, governments worldwide, including the United States, are setting new 

standards for emissions from new compression ignition engines and vehicles.  This is 

being done for the benefit of human health and the environment, via significant 

reductions of particulate matter and NOx emissions.  NOx emissions are the precursors to 

smog that is produced through photochemical reactions in the atmosphere [1-4].  NO and 

NO2 also readily dissolve into water, and thus form nitric acid, the major contributor to 

acid rain [4].  In a report to the World Health Organization, the health effects of diesel 

particulate matter emissions exposure were reviewed and shown through epidemiological 

studies to give higher incidences of cancer in animals, as well as higher incidence of lung 

cancer in people who experience high concentrations of diesel exhaust [5].   

The target for accepted NOx emissions in the US has been tightened over the last 

25 years by the U.S. Environmental Protection Agency (EPA). Between 1997 and 2000, 

the EPA set new Federal emission standards for on-road diesel vehicles that dramatically 

reduced allowable nitrogen oxide (NOx) and particulate matter (PM) emissions. Under 

these new standards, model year 2004 (MY2004) NOx emissions from on-road heavy-

duty diesel engines were half those required under MY1998 standards (2.5 g/KW-hr in 
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MY2004). Starting with MY2007, new on-road heavy-duty diesel engines needed to 

achieve PM levels and phased-in NOx (starting from 2007, ending in 2010) that are only 

10% of MY2004 levels [6].  As a result, diesel engine and vehicle manufacturers needed 

to implement exhaust after-treatment control devices to meet the MY2007 and later 

(MY2007+) requirements. These standards were implemented in conjunction with 

Federal ultra-low-sulfur diesel (<15-ppm sulfur) production requirements, facilitating the 

introduction of low-emission technologies that would otherwise be compromised by high 

sulfur levels in the diesel engine exhaust.  Figure 2.1 and Figure 2.2 show a historical 

perspective of the regulations for diesel engines in Europe and the US.  Table 2.1 shows 

the current challenging state of US emissions regulations for Heavy-Duty Diesel Engines.  
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Figure 2.1:  United States and European Union PM Regulations [7] 
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In addition to the health effects issues, the US is focused on integrating fuels from 

non-petroleum feedstocks into the fuel inventory for US commercial and consumer use.  

Some of the fuels being considered have been shown to increase certain emissions that 
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Figure 2.2:United States and European Union NOx Emissions Regulations with trends in 
NOx reduction technology [6, 7] 

Table 2.1:  U.S. Heavy-Duty Diesel Engine Emission Standards [1, 8-10] 

*Required on-board diagnostics (OBD) systems for vehicles between 8500 and 14000 lbs to be 
phased-in, beginning in 2005 
 
NOx- Nitrogen Oxides ; HC- Hydrocarbons; PM- Particulate Matter 

Emissions 
Type 

Current 
Regulation 

2004 (gm/bhp-hr) 2007(gm/bhp-hr) 2010(gm/bhp-hr) 

NOx 4  .2 ( 50% of fleet 
sales) 

.2 

HC 1.3  .14 (NMHC) ( 50% 
of fleet sales) 

.14 (NMHC) 

NOx and HC  2.4   

PM .1  .01 .01 
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are under regulatory control.  The introduction of these alternative fuels into the 

inventory is of great importance to the US economy and security, and thus research and 

development to minimize the exhaust emissions is required.  

However, what is not clear is how to meet these regulations with diesel and 

alternative fuels.  Researchers are pursuing many options, including pre-combustion, in-

cylinder and post combustion technologies, and combinations of each.  To meet 2007 

particulate matter emissions regulations, diesel engine manufacturers are pursuing 

exhaust after-treatment devices since the technology is available.  To meet 2010 

emissions regulations, researchers are focusing on exhaust after-treatment devices and in-

cylinder methods of emissions control, including homogeneous charge compression 

ignition engines and other low temperature combustion strategies.   The research 

proposed includes a combination of these options to meet the aggressive NOx emissions 

reductions: exhaust after treatment technologies, modifying the chemical properties of the 

compression ignition fuel, and induction of a mixture of fuel and air into a compression 

ignition engine while using a diesel fuel pilot to ignite the fuel-air mixture. 

2.2 Compression Ignition Engines and the Autoignition Process 

The words “compression ignition” refer to the engine classification based on the 

method of fuel ignition.  The compression ignition (CI) process is used in conventional 

diesel engines by pilot injection of diesel fuel.  In this type of engine, air is inducted into 

the cylinder, and compressed.  Just before the combustion process is to start, the fuel is 

injected into the engine.  For a given engine speed, the air flow is essentially constant, 
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and engine load can be adjusted by increasing the amount of fuel injected for each cycle.  

There are several variations on the type of CI engine including the working cycle (2 or 4 

stroke), method of air preparation (naturally aspirated or turbocharged), and method of 

fueling (indirect or direct injection) [11]. 

The compression of the fuel and air mixture causes the mixture to autoignite.  As 

Heywood describes it, autoignition is defined as a rapid combustion reaction which is not 

initiated by an external ignition source [11].  In the literature about basic combustion 

research, this kind of autoignition is described as an explosion.  However, to the engine 

combustion researcher, the term autoignition is preferred over thermal explosion [11].   

A fuel’s autoigniton tendency is described by its cetane number.  Compression 

ignition engines require a fuel to have a cetane number of at least 40 or higher.  Normal 

ULSD (Ultra Low Sulfur Diesel) has a cetane number of around 50, according to fuel 

certificate of analysis.   

The autoignition of the fuel and air is a complex reacting system where the 

chemical mechanisms consist of a large number of simultaneous and interdependent 

reactions or chain reactions [11].  It occurs when the energy being released by the 

reacting system overcomes the required heat loss to the surroundings.  Modern 

autoigniton combustion is described through the use of the chain reaction processes: 

initiating reactions, propagation reactions, and termination reactions.  There are some 

propagating reactions that produce two radical molecules for each radical that is 

consumed in the reaction, referred to as a chain branching reaction.  When the chain 

branching reactions occur very rapidly, the term chain branching explosion is used to 

describe the system [11, 12].  Pfahl and coworkers have described the self-ignition 
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behavior of diesel-relevant fuels in a homogeneous mixture to have a two-step self 

ignition, with the first step considered a cool flame, followed by a deflagrative phase 

(negative temperature coefficient), then by a secondary explosion [13]. 

The compression ignition combustion process is typically described as having 

three main phases: 1) ignition delay, 2) premixed or kinetically controlled combustion, 

and 3) diffusion, or mixing controlled combustion.    First, after the fuel is injected, there 

is some ignition delay as the fuel and air mix together, the fuel droplets are vaporized, 

and a combustible mixture is created.  The ignition delay period ends when autoignition 

occurs.  Second, upon autoignition, a premixed phase of combustion occurs where the 

fuel and air that are mixed during the ignition delay period are consumed.  This results in 

a high rate of pressure rise and heat release.  Finally, the diffusion phase of combustion 

occurs.  During this phase, a diffusion flame front surrounds the fuel spray.  At the flame 

front, stoichimetric mixtures of the fuel and air are present.  The rate of reactions and thus 

the rate of heat release are controlled by the rate of mixing of the fuel and air.  Figure 2.3 

shows an example of a heat release diagram and each of these three phases represented 

[11].  
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2.2.1 Low Temperature Heat Release 

Low temperature heat release has been shown to occur during the first stage of 

ignition in the low temperature chemical kinetic reactions of the hydrocarbon oxidation 

[14].  Higgins and coworkers observed a two stage ignition process while running a 

heavy duty diesel engine at moderate load [14].  The low temperature chemistry exhibited 

a slow rise in pressure and is shown in the chemiluminescence of the spray [14].  Earlier 

work by Dec and Espey also showed evidence of the pre-ignition cool flame 

characteristics [15].   

The low temperature reactions would occur below approximately 760K,  which is 

the temperature at which there is a decrease in the reactivity of the system, labeled as  

 

 
Figure 2.3: Typical Direct Injection engine heat-release-rate diagram identifying different 
diesel combustion phases [11] 
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NTC (negative temperature coefficient) behavior and demonstrated by Curran and 

coworkers as being caused by the competition between two decomposition pathways that 

provide lower reactivity [16, 17].  Curran and coworkers elucidated the reaction 

mechanisms for n-heptane and iso-octane ignition, and thus differentiated the low 

temperature and high temperature regions and their reaction steps[16, 18]. 

Flynn and coworkers showed that the first stage ignition can cause an increase in 

the temperature of the reaction zone by 200-300 °C [19].  However, the magnitude of this 

behavior is dependent on the fuel properties and whether the fuel exhibits some low 

temperature heat release [20]. 

Of interest to the present research are the low temperature reactions and heat 

release of dimethyl ether (CH3OCH3).   Through the early research on the chemical 

kinetics of DME oxidation, it has been demonstrated that the radical reactions during the 

propagation phase of the combustion process of dimethyl ether include OH, H and CH3 

[21].  With the presence of the OH radical, the ignition quality is enhanced by making the 

fuel mixture more reactive, thereby shortening the ignition delay and increasing oxidation 

rates.  When the OH radical was present and DME was provided, the reaction continued.  

The proposed reaction channels for the presence of the OH radical are given in Eq. 2.1 

and Eq. 2.2 [22]: 

  

 

CH3OCH2 + O2 + M $ CH3OCH2O2 +M 2.1

CH3OCH2 + O2 $ 2 CH2O + OH 2.2
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From other work, the proposed decomposition reactions include the following 

chain reaction in Eq. 2.3 [21]: 

Then, a CH3 radical abstracts a hydrogen atom from a second molecule of 

dimethyl ether by the reaction Eq. 2.4 :  

  

The resulting CH2OCH3 radical then decomposes to formaldehyde and methyl 

radical, and then finally to formaldehyde and Methane, according to the following 

reactions Eq. 2.5 and Eq. 2.6 [21]: 

  

Within this study, the author proposed and concluded the following competitive 

reactions through an ab initio calculation, given in Eq. 2.7 : 

 

CH3OCH3 $ CH3 +CH3O 2.3

CH3 + CH3OCH3 $ CH4 +CH2OCH3 2.4

CH2OCH3 + M $ CH3 +CH2O + M 2.5

CH2OCH3 + M $ CH4 +CH2O+ M  2.6

CH3OCH3 $  CH3O + CH3 

$ CH3OCH3 + H 

$ CH4 + CH2O 

$ CH3OH + CH2 

$     CH3OCH + H2 

2.7
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A focus on experiments to confirm portions and proposed mechanisms of DME 

kinetics in the low, intermediate and high temperature regions has yielded a better 

understanding of the oxidation mechanisms [23-25].  A schematic presentation of those 

mechanisms is shown in Figure 2.4 [24].  At low temperatures, the methoxymethyl 

radical (CH3OCH2) adds to molecular oxygen and forms the methoxymethyl-peroxy 

radical (CH3OCH2O2) [24].  After an intramolecular H isomerizaton, this radical 

proceeds through a reaction scheme shown in Figure 2.4.  In the ranges of temperatures 

from 550-600 K, chain branching is due to the reaction pathyway leading through the 

carbonyl-hydroperoxide (HO2CH2OCHO) with the formation of two hydroxyl radicals.  

As the temperature increases above 600 K, the beta ($) scission of the hydroperoxy-

methoxymethyl radical (CH2OCH2O2H) increases [24].   This path produces one 

hydroxyl radical and 2 molecules of formaldehyde, decreasing the reactivity of the 

system and leading to the NTC region between 600-725K.   When the temperature 

reaches above 730 K, the hydrogen peroxide (H2O2) dissociates into two hydroxyl 

radicals leading to the rapid consumption of the rest of the DME fuel [24]. 
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 Dagaut and coworkers performed experimental and detailed kinetic modeling 

studies of the low temperature oxidation of DME with NO to determine the sensitivity of 

the reactions of DME in the presence of NO [26].  It was shown that above 600K, NO 

enhanced the oxidation of DME and yielded methyl formate, and the NO was oxidized to 

NO2 [26].  Below the 600K, the oxidation of DME was inhibited by the NO [26].  They 

 

Figure 2.4: Overall reaction scheme for dimethyl ether oxidation [24] 
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present a detailed chemical kinetic mechanism and go on to explain the reactions that 

inhibit DME oxidation below 600K [26].   

 Pfahl and coworkers’ research confirmed that DME exhbits the typical two stage 

heat release characteristic of some hydrocarbons, that has since been shown in resesarch 

from Dec and Flynn [13]. 

2.3 Diesel Emissions 

The previously described combustion process results in some emissions that are 

undesirable.  Diesel engines have been traditionally high emitters of NOx and particulate 

emissions. Other pollutants include carbon monoxide (CO) and unburned hydrocarbons 

(HC).  These are typically very low for a diesel engine since the air –fuel mixture is lean 

of stoichiometric [11, 27].  The following sections will focus on the two major pollutants 

from a diesel engine, NOx and particulate matter.  

2.3.1 Diesel Combustion Conceptual Model 

 Several researchers have developed and expanded on the conceptual model of 

diesel combustion [28, 29].  Figure 2.5 shows the most currently accepted model for the 

diesel fuel spray and flame developed from laser-based measurements [29].  As the liquid 

fuel leaves the nozzle and travels out as a jet, it rapidly entrains hot air in the cylinder 

thus initiating fuel vaporization [19].  This leads to the formation of a boundary of fuel-

vapor and air mixture in the shear layer along the sides of the fuel jet.  The beginning part 
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of the fuel oxidation process takes place as the fuel-vapor and air mixture enters the jet.  

The final oxidation process takes place around the edges of the jet.  Figure 2.5 shows this 

2 stage fuel oxidation process.  The region of this fuel-vapor and air mixture can have an 

equivalence ratio from 2-4.  In Dec’s research, the NOx emissions are produced in the 

thin layer around the diffusion burning interface.  This interface is identified by a thin 

layer of OH fluorescence [19].   

 Figure 2.6 provides additional detail on the thermal and chemical variations inside 

the burning fuel spray plume.  Cold liquid fuel enters the warm air supplying the 

reactants of a rich premixed zone that feeds the interior of the plume.  The rich 

combustion products are oxidized at the surface of the diffusion flame.  It is believed that 

no free oxygen is available inside the diffusion flame layer.  The diffusion flame layer 

has the constituents and temperature for the formation of diesel particulate [19].  

 

Figure 2.5:  Schematic of the conceptual model of DI diesel Combustion [29] 
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2.3.2 NOx Emissions 

 Oxides of nitrogen (NOx) are formed as a result of the combustion process.  NOx 

includes NO and NO2.  Diesel engines produce significant amounts of NOx, depending 

on the load conditions of the engine.  Of the 100 to 2000 ppm which is produced, the 

majority of this (greater than 80%) is nitric oxide (NO), with the balance being NO2 [11].  

There are several mechanisms for the formation of NOx: Fuel NO, Thermal NO, Prompt 

NO, and NO2.   

 

 
Figure 2.6: Summary of the fuel burning process [19] 
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Fuel NO comes from the oxidation of fuel-bound nitrogen to an oxide of nitrogen.  

However, the fuels used in this research have little or no fuel bound nitrogen.  While the 

initial fuel bound nitrogen is not present, there are fuel radical-bound nitrogen reactions 

that play a role in the formation of NO.  Those postulated reactions, also typically called 

the fuel reburn reactions, are shown in Figure 2.7 and act in the same manner as the 

prompt NO mechanisms.  

The amount of prompt NO typically is considerably smaller than the amount 

formed by the thermal NO mechanism.  The prompt NO mechanism (or sometimes called 

the Fenimore mechanism) occurs as a result of hydrocarbon species (CH or C2) and 

atmospheric nitrogen in the flame zone and occurs very rapidly [30].  Their reaction in 

the flame zone could make nitrogen available for oxidation in addition to CN and HCN, 

and thus leads to NO production.  The Fenimore reactions that are the main focus are 

shown in  Eq. 2.8 and Eq. 2.9 , where  Eq. 2.8 is the primary reaction and rate limiting 

[31, 32].  

 

 When the equivalence ratio is less than 1.2, the reactions proceed from hydrogen 

cyanide (HCN) according to the following chain sequence Eq. 2.10 , Eq. 2.11 , Eq. 2.12 

and Eq. 2.13 [31]: 

 

CH + N2 % HCN + N 2.8

C + N2 % CN + N 2.9

HCN + O % NCO + H 2.10
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Eq. 2.13 is also a reaction involved in the thermal NO mechanism, as well. 

The main reactions for zones where the equivalence ratio is above 1.2 are shown 

in Figure 2.7 , where the NO is recycled to HCN in a slower reaction scheme and where 

NO is actually destroyed [31-33].   

In the case of the diesel engine, the most significant mechanism is the extended 

Zeldovich mechanism, also known as the thermal NO mechanism in which NO is 

typically found and formed in the post flame zone at a slower rate than the prompt NO. 

NCO + H % NH + CO 2.11

NH + H % N + H2 2.12

N + OH % NO + H 2.13

 

 
Figure 2.7: NO production associated with the Fenimore prompt mechanism [32, 33] 
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The extended Zeldovich mechanism consists of the following three reactions, Eq. 2.14 , 

Eq. 2.15, and, Eq. 2.16 .  

 

 

 NO formation is strongly dependent on temperature [11].  It is typically formed 

during the first 20 degrees of crank angle, after the start of combustion.  Therefore, 

emission reduction strategies target this time period, and aim to reduce the combustion 

temperatures [34].  

NOx also includes NO2 emissions.  Glassman discusses briefly the literature on 

contributions to NO2 emissions reported in exhaust gases and in flames [12].  He notes 

that these results seem surprising since kinetic models have indicated that NO2 formation 

and reduction can be neglected in practical devices.  Merryman and Levy examined NOx 

formation in a flat flame burner operated near stoichiometric conditions [35].  They 

postulated a series of reactions that represent their findings, shown below in  Eq. 2.17, 

Eq. 2.18, and Eq. 2.19 : 

  

O + N2 % NO + N 2.14

N + O2 %NO + O 2.15

N + OH %NO + H 2.16

                                           HN } + O2 % NO + …….. 
                                           CN } 2.17
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In the low temperature regions of the visible flames, they measured large concentrations 

of HO2 that can react with the NO in the high temperature regions and diffuse back to the 

lower temperature regions of the flame [35].  They also found that NO2 is consumed 

rapidly in the near post flame zone, where the NO concentration also rose.  The 

significant reaction is represented by Eq. 2.18 [35].  Glassman suggests that the NO2 

formation is further supported by the fact that Eq. 2.18 is two orders of magnitude faster 

than Eq. 2.19 [12].   Cernansky and Sawyer also concluded from their experiments with 

turbulent diffusion flames that the high levels of NO2 were a result of the HO2 reaction 

with NO and O atoms [36].  Hilliard and Wheeler also showed the presence of NO2 in 

engine exhaust [37]. 

 More recent research has focused on the hydrocarbons in the turbulent diffusion 

flame [38-41].  Hori has investigated low concentrations of various hydrocarbons below 

C4H10 and their effect on NO2 conversion between 600 K and 1100 K.  Meunier and 

coworkers focused on the formation and destruction of NO in a propane diffusion flame.  

They showed that the prompt NOx mechanism was a dominant route, in addition to the 

reactions between NO and hydrocarbon radicals such as HCN in what is typically 

described as fuel reburn.  Cheng, Mueller and coworkers have also shown the increase in 

NO2 emissions with the decrease in NO emissions in a dilute mixing controlled 

combustion in an optical direct injection diesel engine [42-44].  

NO + HO2 %  NO2 + OH 2.18

NO2 + O  % NO + O2 2.19
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2.3.3 Particulate Matter Emissions 

Particulate matter can be defined as the combination of soot, condensed 

hydrocarbons, sulfates, oil, and water that attach to agglomerated soot particles in the 

exhaust stream [45].  Soot formation takes place in an environment in the engine that is 

1000 to 2800 K and at pressures from 50 to 100 atmospheres [11].  Particulate matter can 

also be divided into two separate groups, the soluble and the insoluble fraction [46].  The 

insoluble fraction is comprised mainly of the elemental carbon formed in the diffusion 

flame that agglomerates into soot.  The soluble portion of the particulate matter emissions 

are the hydrocarbon species that condense and adsorb on the insoluble portion.  The 

aerosol of solid phase particles in the exhaust gas are further described by the total 

amount of the condensed phase per unit volume of the exhaust gas, and the number of 

soot particles per unit volume with a specific size diameter characteristic range of the 

total group [11].  For particle sizing, the particles are typically assumed to be spherical, 

while TEM photos show that this is not the case.  Figure 2.8 is a representation of the 

various types of compounds present in particulate matter emissions.  
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Detailed modeling and experiments have been conducted to try to understand the 

soot formation process in different types of flame structures and in flames of various 

fuels [47].  It has been established that several classes of  hydrocarbons, namely 

polycyclic aromatic hydrocarbons (PAH) and acetylene (C2H2), are important precursors 

to soot formation and are created in fuel-rich conditions [11, 48].  From the initial 

formation of a benzene ring, the soot particle increases in size through the addition of 

acetylene [48].   The adsorption and condensation of the hydrocarbons occurs after the 

soot leaves the cylinder and begins to cool in the exhaust gas stream [11].   

2.4 Emissions Reduction Strategies  

 Emission control strategies can be divided into three categories: pre-combustion, 

in-cylinder, and post-combustion [49, 50].  A list of common approaches for each area 

can be found below in Figure 2.9  [49].  For many years, diesel engines have escaped the 

 

Figure 2.8: Schematic of Diesel Particles and Vapor Phase Compounds [46] 
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necessity of post-combustion controls because of modifications which could be made to 

fuel or to the engine to meet any new set of emissions regulations.  However, an 

important requirement for implementation of many post-combustion technologies is the 

reduction of the sulfur content of the fuel, i.e. , the pre-combustion area.  This was just 

accomplished with the introduction of the ultra low sulfur diesel fuel (ULSD) in October 

of 2006 mandated by the EPA [8, 10].  The following discussion will focus on the pre-

combustion, in-cylinder, and post –combustion strategies of controlling NOx emissions 

and particulate matter emissions. 

 
 

In-Cylinder
Combustion Post-Combustion

Pre-Combustion 
(Fuel Modification) 

Particulates 
Decrease Sulfur 
Increase O2 Content 
Decrease Aromatics 
 
NOx 
Increase Cetane # 
Add Water 
 
 

Particulates
Fuel Atomization 
Common Rail Injection 
Injection Timing 
Rate Shaping 
Split Injection 
 
NOx 
EGR (Exhaust Gas Recirculation) 
Water Injection 
Injection Timing 
Rate Shaping 
Split Injection 

Particulates 
Particulate Trap  
Particulate Oxidizer 
 
NOx 
Selective Catalytic Reduction 
Selective Non-Catalytic 
Reduction (Thermal & Non-
Thermal) 
 
 

Figure 2.9: Emissions Control Strategies for Compression Ignition Engines [49] 

536



25 

 

2.4.1 Pre-Combustion Strategies for Emissions Reduction  

 Many researchers have shown that the properties of diesel fuels in combination 

with engine technology can greatly affect the engine out emissions [51].  With the current 

research focus shifting to demonstrating alternative compression ignition fuels from non-

petroleum sources in diesel engines, much research is bringing to light ways to reduce 

exhaust emissions, including particulate matter emissions, through changes in fuel 

formulation.   

To enable the implementation of particulate and NOx control technologies, the US 

EPA has mandated that ultra-low-sulfur fuels be available to enable advanced 

aftertreatment strategies, which can be highly sulfur sensitive [52].  Modification of 

diesel fuel composition, for example, by blending with oxygenated fuels, also can 

contribute to reducing emissions. The addition of biomass-derived fuels and synthetic 

fuels to diesel fuel base stocks is a means of producing a cleaner burning diesel fuel.  

Blending with oxygenated or zero sulfur fuels can lead to particulate emissions 

reductions by interfering with the soot formation process and by decreasing the formation 

of sulfates.  However, in the case of biodiesel fueling (e.g., “B20”, a blend of 20 vol.% 

methyl soyate in diesel fuel) there is a well documented increase of 2-4% in NOx 

emissions [53].  

 Hess showed that there could be 10% brake specific particulate matter reduced 

with just 2% oxygen addition in the fuel [54].  Hess used such oxygenates as monoglyme 

and diglyme, from the family of glycol ethers.  Hess’s work also showed that with each 

1% of oxygen blended above 2%, the improvement of the particulate matter reduction 
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decreases until approximately 7% oxygen blended into the fuel, and yields about 7% 

brake specific particulate matter reduction.   

 The recent requirement for fuel sulfur reduction to allow for the use of exhaust 

catalysts also gave way to the added benefit of particulate reduction [9, 10, 55].   Fuel 

sulfur has been shown to contribute to a total particulate matter mass in the form of 

sulfates [56]. 

 Other alternative compression ignition fuels from non-petroleum sources are of 

significant interest and have been shown to reduce or increase exhaust emissions.  Two of 

these fuels for compression ignition engines will be discussed as they are used in this 

research: Dimethyl Ether and Biodiesel.  

2.4.1.1 Dimethyl Ether 

Dimethyl ether (DME) has been considered for use as a fuel in compression 

ignition engines since the early 1990s.  Fleisch and coworkers demonstrated a Navistar 

diesel engine meeting the California ULEV emissions while operating on DME [57].  

The exciting results have suggested that the DME is a potential fuel for the future that can 

meet the stringent emissions.  The following section gives a brief overview of DME. 

DME is a compound that has been targeted for future use as a fuel, in several 

countries around the world, including Japan, China, and Sweden [58-60].  Motivation to 

use DME exists for several reasons.  There has been confirmation that the fuel yields low 

particulate emissions and possibly lower NOx emissions [57, 61, 62].  In addition, DME 
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can be made from a variety of feedstocks including coal, biomass, and natural gas via the 

systhesis gas process, which can support the use of alternative energy resources [63, 64].  

Compounds in which two hydrocarbon groups are bonded to one oxygen, 

represented as R-O-R’, are called ethers.  The organic groups bounded to the ether may 

be alkyl, aryl, or vinylic, and the oxygen can either be in an open chain or ring 

configuration [65].  Ethers commonly observed in long chain structures are referred to as 

linear ethers.  As compared to alkanes of similar carbon number, the boiling points of 

ethers are higher [65].  This class of oxygenated compounds have high cetane numbers 

and excellent cold flow properties [66].   

 Simply stated, dimethyl ether is an ether with a methyl group on each side of an 

oxygen atom.  Today, it is predominantly used as an aerosol propellant because it is not 

harmful to the ozone layer, in contrast to the chloroflurocarbons used previously [64].  

Also, it is virtually non-toxic and is easily degraded in the upper atmosphere [67].  It can 

be represented by the symbol: CH3-O-CH3.  The physical properties of DME are shown 

in Table 2.2 along with some other fuels for comparison [57, 61, 68, 69] . 
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The cetane number describes the ignition quality of the fuel.  The shorter the 

ignition delay the better the ignition quality of the fuel, and thus, the higher the cetane 

number.  Since DME has a higher cetane number than conventional diesel fuel, it will 

ignite readily and burn more completely.   

The viscosity of DME, as a liquid, is much lower than that of diesel fuels.  This 

offers an advantage in that the fuel will be easier to deliver into the engine cylinder than 

diesel fuel during cold weather conditions.  However, some studies have shown that 

DME leaks from the fuel injectors [70, 71].   In addition, using neat DME within an 

engine creates some lubricating problems because of the low viscosity.  Researchers are 

now understanding that the fuels used in automotive fuel injection systems have inherent 

Table 2.2: Physical Properties of DME  [57, 61, 68, 69] 
 

Property DME Diesel Propane 
Chemical Formula C2H6O C10.8 H18.7 C3H8 
Mole Weight 46.07 148.6 44.11 
Critical Temperature- 0C 127 - 95.6 
Boiling Point- 0C -24.9 71-193 -42.1 
Vapor Pressure at 20 0C-kg/m2 5.1 <0.01 8.4 
Critical Pressure-bar 53.7 - 43 
Liquid Viscosity- cP .15 2-4 .10 
Liquid Density at 20 0C-kg/m3 668 800-840 501 
Bulk Modulus (N/m2) 6.37E+08 1.49E+09  
Specific Density,gas 1.59 - 1.52 
Solubility in H2O at 20 0C g/l 70 Negligible .12 
Lower Heating Value- kJ/kg 28430 42500 46360 
Heat of vaporization- kJ/kg 200C 410 233 426 
Explosion limit in air- vol% 3.4-17 1.0-6.0 2.1-9.4 
Ignition temperature at 1 atm- 0C 235 250 470 
Cetane Number 55-60 40-55 - 
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lubricating traits which are a very significant factor, especially when additives and 

alternative fuels are being considered [72-75].   

The boiling point of DME is another important advantage for its use as a fuel.  

Again, it proves to have better characteristics for cold starting conditions, which is a key 

factor in engine development.   

The vapor pressure of DME is a concern.  Since the fuel is a gas at atmospheric 

pressure, to use it as a liquid one would need to mix the fuel with a lubricity additive and 

inject the fuel as a liquid with the entire fuel system pressurized [76].  This leads to other 

complications with fuel delivery, although the technology to do this is similar in nature to 

LPG (Liquid Propane Gas) because LPG is also moderately pressurized to keep it in a 

liquid state [77].   

Another important aspect of combustion emissions from a diesel engine fueled on 

DME versus diesel fuel, is the reduction and elimination of particulate emissions.  

Particulate emissions can be observed as a black smoke emitted out the tailpipe.  The 

oxygen content of a fuel blend with DME (at roughly 40 to 100  wt.%), allows for the 

emissions to be smokeless, as shown in the literature [57, 61, 69, 78-81].  DME has a 

34.8% oxygen content as a neat fuel.  Nabi and coworkers showed “smokeless” engine 

operation from a diesel fuel with an oxygen content at around 38 wt. % [78].  However, 

work by Chen and coworkers confirms that even with 80 wt.% DME addition to diesel 

fuel, some smoke will be produced at high engine loads, even though it is a small amount 

[81]. 
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The heating value of DME is a concern, because the heating value of diesel is 

roughly 1.7 times that of DME.  This results in the need for more volume of fuel to 

produce the same output from combustion.  By altering injection amounts to the 

cylinders, the amount can be compensated to counteract the decreased heating value and 

prevent “de-rating” of engine output. 

Dimethyl Ether (DME) has been shown to reduce PM and NOx emissions [57, 

82-86].  Not only has DME been demonstrated theoretically and experimentally to 

exhibit rapid reaction chemistry, but also DME has been shown to reduce NO and CO 

emissions in premixed flames [87].  In comparing DME with propane and butane in a 

fuel equivalence ratio range of 0.6 to 3.2, DME demonstrated reduced CO emissions, and 

less striking, NO reduction over the other two fuels.  As a result of finding higher 

equilibrium NO concentration with DME, it was determined that this was due to a higher 

adiabatic flame temperature over the entire stoichiometric range in comparison to 

propane and n-butane[87].  However, Frye conceeds that in all comparions made on the 

NO emissioins, DME gave at worst the same result as propane and n-butane[87].    

 The US does not currently have in place facilities for the manufacture of DME on 

a fuel production scale or the infrastructure available for the use and distribution of the 

fuel.  This fuel has been considered in many economic models and studied as a fuel to 

achieve tripled fuel economy, but it is not currently a fuel being considered for use in US 

vehicles, and thus no on-road vehicles are in trials or production [88-92].  It has been 

reported that DME acts similarly as LPG fuel and the LPG fuel transport lines could be 

used to transport and distribute DME in a more widespread capacity [93, 94].  
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 The research discussed in Chapter 5 uses DME as the fumigated fuel in a Mixed 

Mode Combustion process.  That research exploits the unique low temperature ignition 

quality of DME. 

2.4.1.2 Biodiesel 

Biodiesel has received rapidly growing interest as a fuel to blend with existing 

diesel fuels.  Biodiesel is an alternative diesel fuel created by the conversion of oils, fats 

and fatty acids to methyl and ethyl esters via esterification processes [95].  A variety of 

vegetable oils and animal fats provide the source of the triglyceride fats and oils [96].  

Continuous feedstock growth and livestock production provide a constant supply of 

source material allowing biodiesel to be a renewable source of fuel, which can be created 

domestically [97]. 

Additionally, biodiesel is miscible with petroleum-based diesel and works in any 

diesel engine with little or no modifications as pure biodiesel or as a blend with any other 

diesel fuel.  It fact, biodiesel contains a higher oxygen (~ 11 wt. %) content resulting in a 

more complete combustion of the fuel, reducing emissions of particulate matter, 

unburned hydrocarbons and carbon monoxide.  Sharp and coworkers’ research showed a 

40% reduction in CO emissions using neat biodiesel in modern diesel engines, while 

hydrocarbon emissions were eliminated [98].  They also tested a 20% biodiesel blend and 

found a comparable and proportional trend in the emissions [98].   

While there are many benefits to biodiesel, studies have shown that engine 

emissions using biodiesel fuels typically increases emissions of oxides of nitrogen (NOx) 
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[53, 97].  This compiled data from the US EPA is shown in Figure 2.10 [53].  For a 20% 

blend of biodiesel in diesel fuel, on average, a 2% increase in NOx emissions is observed.  

However, this EPA study was the culmination of much research on heavy duty diesel 

engines that have various types of diesel engine injection equipment.  Research is now 

focused on the fuel property aspects of the biodiesel and how this affects the resultant 

NOx emissions.  The EPA study also prompted more research into the effect of biodiesel 

on Light Duty Diesel engines, as this was missing from the initial review.  Duffield, 

Shapouri, Grabowski, McCormick, and Wilson’s report, “ U.S. Biodiesel Development: 

New Markets for Conventional and Genetically Modified Agricultural Products”, has 

also prompted further research into improving biodiesel in the areas of NOx emissions, 

viscosity, and oxidative stability to allow biodiesel to become a commercially acceptable 

fuel [97].   

One approach to improving the properties of biodiesel fuels is to increase the 

degree of saturation of the ester molecules contained in the biodiesel.  The saturation of 

the biodiesel fuel is often measured and reported as the iodine value.  McCormick and 

cowokers showed a correlation between the iodine value and NOx emission from various 

biodiesel feedstocks [99].  Figure 2.11 shows the correlation developed by McCormick 

and coworkers between the iodine value of biodiesel from various feedstocks and the 

resulting NOx emissions from the use of the fuel.  Researchers are pursuing modifying 

the soybean oil through genetic engineering of the soy plant to increase the oleic acid 

content [100].  Increased saturation can also be achieved by hydrogenation of the 

biodiesel fuel.  Chapter 4 of this research presents a study of the emissions characteristics 

from a light duty diesel engine from the blending of a hydrogenated soy based biodiesel 
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with low sulfur diesel.  In this research, the EGR is removed so that the NOx reduction 

effect of the EGR does not complicate the actual reductions or increases achieved by the 

fuel.  

 
 

 

 
Figure 2.10: Average emissions impacts of biodiesel for heavy-duty highway engines 
[53] 
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2.4.1.3 Iodine Value of Biodiesel Fuels 

The iodine number is a measure of the degree of unsaturation of the esters within 

biodiesel fuels [95, 99].  A fuel containing a higher degree of unstaturated esters will 

have more double bonds within the fatty acid chain than that of a fuel with a lower degree 

of saturation.  According to McCormick and coworkers, a lower iodine number results in 

less nitrogen oxide emissions than a biodiesel fuel with a higher iodine number [99].  

This correlates with his other observations because a biodiesel fuel with a higher iodine 

number will have a lower cetane number and a higher density [101, 102].  However, 

McCormick and co-workers observed that a higher degree of saturation decreased the 

 

 
Figure 2.11: Iodine Value vs. NOx [99] 
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boiling point and viscosity of the biodiesel fuels that were tested resulting in poor cold 

flow properties [99]. 

Thus, fuel properties are very interrelated with each other and with engine 

performance.  The fuel properties and their relationship to the combustion of the 

hydrogenated and normal soy based biodiesel fuel are further investigated in Chapter 4.   

2.4.1.4 Theories about Biodiesel and NOx 

The increase of NOx emissions as a result of the use of biodiesel in an engine has 

not clearly been understood.  Recent reviews of the emissions results are clearly showing 

increases and reductions of NOx emissions depending upon engine size, fuel injection 

type, fuel injection strategy, and engine testing strategy.  Researchers have given various 

explanations [103-106].  This section will explore the current explanations given for the 

biodiesel NOx effect.  The current theories include: 1) Adiabatic Flame Temperature, 2) 

Flame Radiation, 3) Mixing, 4) Prompt NOx, 5) Fuel Injection Timing, 6) Cetane 

Number, 7) Mixture Stoichiometry at the Lift-Off Length, 8) Oxygen Content of the Fuel, 

9) Fuel spray characteristics, such as droplet size and air entrainment.  

Adiabatic Flame Temperature:  The conceptual model of the diffusion or 

mixing controlled phase of diesel combustion suggests that NOx is formed on the lean 

side of the flame [29].  Dec also confirmed this model through laser based measurements 

[107].  Thus, the flame temperature in the diffusion zone in close proximity to the NOx 

formation zone has an influence on the thermal NOx formation.  Some authors state that 

the adiabatic flame temperature of the fuel is higher for biodiesel fuels [108-110], while 
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others state that it is higher for diesel fuels [111, 112].  Cheng and coworkers found no 

significant different between methyl oleate and a primary reference fuel in calculations 

for the stoichiometric conditions representative of those in the diffusion flame [42]. 

Flame Radiation:  The flame radiation theory relates to the reduction of soot 

volume fraction as a result of using a biodiesel fuel or fuel blends.  Musculus showed that 

soot radiation from the flame zone may cool down the diffusion flame temperature and 

thus lead to a reduction in NOx emissions [113, 114].  Since there is less soot in the 

diffusion flame region during the combustion of biodiesel, this can lead to a reduction of 

soot radiation from the flame region and result in higher flame temperatures [113, 114].   

Cheng and coworkers used spatially integrated natural luminosity (SINL) in an optically 

accessible single cylinder Caterpillar 3176 engine to view the change in the luminosity of 

the soot radiation with different fuels [42].  In their research, the timing of the start of 

combustion for each fuel was matched to keep the overall combustion timing the same.  

Their research shows that there is less luminosity for biodiesel in comparison to the 

reference fuel with increasing engine load, suggesting that the reduction in flame 

radiation may be increasing the peak flame temperature and thereby NOx emissions[42].    

Mixing:  In the literature, a connection between the premixed-burn fraction and 

NOx emissions has been demonstrated [113].  Musculus has shown that as the premixed-

burn fraction increases, NOx emissions increase.  The timing of the premixed-burn 

fraction can be a function of the injection timing, or more importantly the ignition delay 

of the fuel.  A smaller premixed-burn fraction would be attributed to a shorter ignition 

delay.  
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Prompt NO:  Prompt NO is formed by reaction of radical HC species with 

nitrogen, leading to the formation of NO [33].  It can account for a significant portion of 

the NOx formation [33].  Researchers have suggested that prompt NO ( also known as 

Fenimore NO) is the reason for the increase in NOx emissions, and not the Zeldovich 

mechanism (thermal NO) [99, 115].  They speculate that during combustion of the 

biodiesel fuel, the double bounded molecules cause higher levels of certain hydrocarbon 

radicals in the fuel-rich zone of the diesel combustion spray [110].  Ban-Weiss and 

coworkers used numerical simulations of methyl butanoate to show that the Fenimore 

mechanism contributes to 13% of the overall NOx emissions [110]. They also confirmed 

with a comparison to methyl trans-2-butenoate that the double bond produces an increase 

in the flame temperature of 14 K, which resulted in a 21% increase in the NOx emissions 

[110].   

Fuel Injection Timing:  An advance of the start of injection due to the physical 

property differences between diesel fuel and biodiesel fuel has been proposed and shown 

to be a contributor to the NOx emissions increase [103].  Szybist and coworkers showed 

that this trend of injection timing advance directly correlated to a NOx increase, and 

explained this was due to the elevated bulk modulus of compressibility of the biodiesel 

fuel [116].   This work was performed with a pump-line-nozzle fuel injection system.  

This advance is also seen as a result of a change in the throttle position as a result of the 

additional biodiesel fuel required due to the reduced heating value of biodiesel [117].  

While Boehman and coworkers established a relationship between the bulk modulus of 

the fuel and fuel injection timing [118], Szybist and coworkers concluded that the 

dominant effect for the particular engine being tested was the timing of maximum heat 
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release and maximum cylinder temperature[119, 120].  Recent work performed with a 

light duty diesel engine equipped with a common rail injection system showed that the 

system exhibited no measurable injection timing shift when biodiesel blends were used 

[121].  However, biodiesel blends exhibited higher maximum needle lifts, longer 

injection durations, and higher rail pressures to deliver the required fuel as a result of the 

change in heating value with biodiesel [121].   

Other researchers have studied how the impact of multiple injection strategy 

affects NOx emissions when using biodiesel fuels.   Choi and coworkers showed that at 

high load, a split injection strategy had no effect on NOx emissions, but at low load, NOx 

decreased and the effect seemed to be dependant upon the start of injection [122].  

Utilization of a pilot injection is becoming important in modern diesel engines as a means 

to reduce the combustion noise level.  The pilot injection decreases the premixed-burn 

fraction intensity of the combustion process.  Zhang studied the pilot injection effect in a 

4 cylinder DI diesel engine [123].  While his studies showed that the NOx emissions 

could be reduced with the use of EGR and without pilot, there was an increasing amount 

of smoke emissions with the pilot injection and a slight increase in the NOx emissions 

[123].  Zhang looked at the change in the interval between the pilot and the main 

injection and saw little change in the NOx emission level, showing that this can be used 

to reduce combustion noise and have no effect on NOx emissions [123].  Senatore and 

coworkers showed in their work that “by varying injection start advance and EGR 

percentage” for biodiesel, these were effective measures to produce the same NOx 

emissions produced from a EURO IV Common Rail Diesel Engine [124]. 
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Cetane Number: Biodiesel fuel tends to have a higher cetane number than diesel 

fuels.  Based on this data, it would be expected that biodiesel would reduce the NOx 

emissions since it would produce a shorter ignition delay and thus a shorter premixed-

burn fraction [42].  Hence, cetane number alone may not be an effective measure of the 

ignition behavior of the fuel.   

Mixture Stoichiometry at the Lift-Off Length:  Cheng and coworkers suggest 

that the mixture stoichiometry at the lift-off length of the fuel from the injector nozzle 

may be different between diesel and biodiesel and thus plays a role in the NOx increase, 

but the mechanisms for this are unknown [42].  Choi and Reitz showed though numerical 

simulation that the spray tip penetration and fuel mass injections increase with biodiesel 

blended in diesel fuel [125]. 

Oxygen Content of the Fuel:  Some researchers suggest that the higher oxygen 

availability in the combustion chamber as a result of the oxygen in the fuel contributes to 

the NO formation process [126, 127].  Schmidt and coworkers showed that enriching the 

intake air with oxygen led to the same NOx increase exhibited with the increase in 

oxygen of the biodiesel fuel.  Iida and coworkers also showed an increase in NOx 

emissions with an increase in the oxygen in the intake air.  Song and coworkers showed 

that both the enrichment of the intake air and the oxygenated fuel gave an increase in the 

NOx emissions [128].  The increase was higher for the enriched intake air than for the 

use of the oxygenated fuel.  Other researchers argue against the presence of oxygen in the 

fuel as an explanation of the NOx increase.  Lupuerta and coworkers made this 

conclusion because the diffusion combustion is occurring in regions of  stoichiometric 

oxygen-fuel ratio, and thus the oxygen in the fuel is not enough to make a difference in 
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the flame chemistry[108, 129].  Yuan and coworkers tried to find a correlation between 

NOx and fuel oxygen content, but were unsuccessful [130].  

Fuel Spray Characteristics: The fuel spray characteristics, including droplet size 

distribution, droplet inertia, air entrainment, penetration in cylinder, evaporation rate, and 

heat dissipation are affected by the various fuel properties [95].  These fuel properties 

include viscosity, surface tension, cetane number, and the boiling range temperature of 

the fuels [95].  These physical phenomena have some influence on the ignition delay 

time, and thus on the premixed-burn fraction/ diffusion combustion ratio and in turn on 

the NO formation process [103].  If cetane number is not an effective measure of the 

ignition behavior of the fuel, then there are other fuel properties that would affect the 

premixed-burn fraction of the fuel and increase the NOx emissions, in spite of the higher 

cetane number of the biodiesel fuel [42].  As mentioned previously, Choi and Reitz 

showed through numerical simulation that blends of biodiesel fuel require higher fuel 

mass injection rates and thus produce increased spray tip penetration in the cylinder 

[125].  This effect of mixing of a biodiesel fuel type and spray penetration into the 

cylinder was also shown by Yuan and coworkers [130]. 

2.4.2 In-Cylinder Combustion 

There are several techniques which can aid in reducing NOx emissions in the 

cylinder during the combustion process.  These include exhaust gas recirculation (EGR), 

injection timing control, and fuel injection rate shaping [131-133].  The goal of these 

three techniques is to reduce the peak flame temperature which leads to thermal NOx or 
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to reduce the time for the thermal NO reaction while still achieving the best BSFC for the 

particular engine condition.  However, these techniques also have drawbacks.  In altering 

the fuel injection timing to the cylinder, power decreases and fuel consumption increases.  

Also, reducing the peak flame temperature causes an increase in the level of soot 

emissions, due to the reduced kinetic rate for soot oxidation [49].  

There are several new techniques being explored to simultaneously reduce the 

soot and NOx emissions from the combustion process.  These include Low Temperature 

Combustion (LTC), Homogeneous Charge Compression Ignition (HCCI), Premixed 

Controlled Compression Ignition (PCCI).  Both LTC and PCCI have been shown to give 

high NOx reduction and low particulate emissions [134].  PCCI differs from HCCI in that 

a direct injection of fuel prior to the main injection achieves air/fuel mixture gradients 

that are not truly homogeneous as in HCCI [135].  High levels of EGR are also associated 

with LTC and PCCI modes.  Hardy and Reitz combined the effects of PCCI and 

diffusion-controlled diesel combustion to achieve emissions levels below the 2010 

emission standards [135].  A map of the local combustion temperature and local 

equivalence ratio shows the range characteristics of the different combustion modes 

[134]. This map is shown in Figure 2.12. 
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2.4.2.1 Homogeneous Charge Compression Ignition (HCCI)  

Homogeneous Charge Compression Ignition (HCCI) combustion occurs when a 

mixture of air and fuel, and sometimes recycled combustion products, is compressed until 

it autoignites [136].  The result is heat releasing reactions that initiate simultaneously at 

multiple sites in the combustion chamber.  In contrast to diesel (diffusion –controlled) 

combustion, HCCI reactions are not limited by the mixing rate at the interface between 

the jet of fuel and the surrounding oxidizer.  HCCI combustion differs from spark-ignited 

combustion because it has no discernible flame front and it has no localized high 

temperature reaction region [137].  

For the purpose of the research involved in this project, the following definitions 

are introduced.  Induction of a fuel and air mixture into an engine cylinder during the 

 

 
Figure 2.12: LTC and PCCI concept on #- T map [134] 
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intake stroke, and the compression of that mixture to ignition is referred to as 

homogenous charge compression ignition or HCCI.  When using a diesel pilot as the 

ignition source for the homogeneous charge, the combination of combustion strategies is 

referred to as mixed mode combustion.    

2.4.2.2 Variables involved in HCCI process 

HCCI combustion displays a particular heat release curve with two distinct stages.  

The first stage of the heat release is associated with low temperature kinetic reactions 

(cool and/or blue flame) [136].  The time delay between the first and the main heat 

release is attributed to the negative temperature coefficient regime of the reactions [138, 

139].  An example of the combustion parameter diagram is shown below in Figure 2.13 

[140].  Research has shown that HCCI combustion initiates simultaneously in multiple 

locations in the cylinder and that there is no discernable flame propagation [138].  Most 

researchers believe that HCCI heat release is purely controlled by chemical reactions 

[136].    Since the reactions are not initiated by spark ignition and not limited by 

traditional flame sheet physics, leaner mixtures can be used in HCCI combustion [136].   
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Management of HCCI combustion in a practical system is a function of 

controlling the autoignition of the fuel which is dictated by the location of the low 

temperature reactions which then function to generate the high temperature reactions in 

the main heat release.  Therefore, it is important to control the low temperature reactions 

[141].  Researchers have offered several methods to accomplish this, which include 

controlling the intake air temperature, modify the fuel blending, or 

turbocharging/supercharging the intake air charge [142, 143].  These are specific methods 

to modify the initial temperature of the fuel and air charge, without significant 

modifications to the engine, as would be required to implement variable compression 

ratio or variable valve timing [136, 144]. 

 

 
Figure 2.13:  Definition of the combustion parameters [140] 
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2.4.2.3 Types of Fuel Mixture Preparation for Compression Ignition Combustion 

Throughout the development of the HCCI concept, there have been limitations 

discovered with the process.  These include the increase in hydrocarbon and carbon 

monoxide emissions, the limitation on engine load that can be achieved both on the low 

end of operation (speed and load that operate the engine below 2.0 bar IMEP) and the 

high end of operation (speed and load the operate the engine above 3.5 bar IMEP) [145], 

and the ability to control ignition of various fuel types.  Therefore, researchers have tried 

to resolve the issues with different types of fuel mixture preparation for compression 

ignition combustion which include HCCI –like concepts and testing with various fuels: 

! Fuels (liquid and gaseous): Gasoline, diesel, naphtha, natural gas, butane, propane 

! Fuel introduction: micro-atomization in air induction, fumigation, direct injection 

in cylinder 

! Mixing: Homogeneous, partial mixed [135, 146] 

! Ignition initiation: Through the compression of the fuel, initiated by a spark, 

initiated by a pilot injection 

Though there have been  many researchers working on the same issues over the 

last 10-15 years, some of the same questions still remain.  Most importantly, the kind of 

fuel appropriate for the HCCI process and how to control the ignition behavior of the fuel 

[145, 147, 148].  Additionally, the benefits for emissions reductions have not always been 

successfully demonstrated across all engine platforms, lending further support for 

continued research.   

557



46 

 

2.4.2.4 HCCI engine and Dual Mode Processes 

A suggested method to increase the operating range of an engine operating with 

the HCCI process is to prepare it to run in a dual mode process.  This can mean two 

things: 1) that the engine operates with two different combustion processes over the 

entire range of operation of the engine, and 2) that the engine operates in HCCI with a 

pilot injection, as a dual fuel engine, with the injection occurring inside the intake air 

system just prior to entry into the cylinder or directly into the cylinder.  Stanglmaier and 

coworkers at Southwest Research Institute developed a dual fuel natural gas engine to 

operate in HCCI mode at idle to mid range operation to improve fuel efficiency and 

reduce NOx emissions [149].  Although the goal of the experimentation was achieved, 

higher levels of HC and CO emissions were also observed [149].    Park and coworkers at 

West Virginia University developed a dual fuel engine based on the Navistar T444E 

[150]. The engine was fumigated with natural gas, and the diesel injection system was 

operated to bring in diesel fuel at a different timing scheme than the original engine 

[150].  Although they were successful in reducing NOx and particulate matter emissions, 

the HC and CO emissions increased substantially over the diesel-only levels [150].   

2.4.2.5 Mixed Mode Combustion  

There is also another style of combustion that is being explored.  In the literature, 

some researchers call it the dual fuel engine, whether those fuels are gaseous or liquid or 

a combination of both [151-154].  In each of these researchers’ work, diesel or biodiesel 

fuel was used as a “pilot” fuel, a gaseous fuel is inducted or injected into the cylinder, 
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and a pre-mixed gaseous fuel and air mixture is compressed.  While this may sound 

similar in nature to conventional pilot and main fuel injection in a diesel engine, the 

benefits of a dual fuel engine are only now being researched and understood.  Karim has 

postulated a schematic representation of the energy release rate for this type of 

combustion strategy [151].   In his schematics for both a light load and a heavy load 

condition, he shows three phases of the energy release: 1) phase one is due to the 

combustion of the pilot fuel, 2) phase 2 is due to the combustion of the gaseous fuel that 

is in the immediate vicinity of the pilot combustion, and 3) phase 3 is due to any 

preignition reactions and the turbulent flame propagation within the lean mixture [151].  

Karim’s research focused on using primarily propane, hydrogen, and methane as the 

gaseous fuel, with the primary focus on methane, and emissions characteristics and 

combustion analysis [151].  

Chapter 5 of this thesis focuses on a similar kind of dual fuel engine, referred to 

here as a mixed mode combustion process.  In this research, DME is the fuel being 

inducted into the engine and diesel is the pilot fuel.  In this process, a low temperature 

combustion mode is initially achieved with a secondary diffusion mode of diesel 

combustion.  However, the low temperature combustion was not achieved with the aid of 

high levels of EGR or cooled EGR.  It is hypothesized that, through the use of the 

ignition properties of the fuel and early low temperature heating in the cylinder, a 

reduction in NOx emissions can be achieved.   
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2.4.2.6 Ignition Delay 

An important property of the fuel is its ignition delay, or the time from which the 

fuel begins to be injected into the cylinder until some detectable heat release occurs. 

Time is required to sufficiently mix the fuel and air present in the cylinder, and then 

chain initiation reactions take place so that the chemical explosion begins to occur and 

the chain propagation reactions begin to increase in number [11].  Researchers have tried 

to understand the factors that affect the ignition delay so that this could be used to better 

control the combustion process regardless of fuel type [11].  The standard equation used 

to describe ignition delay is shown in Eq. 2.20.  In this equation, idC  is the ignition delay, 

EA is the apparent activation energy for the fuel autoignition process, R~ is the universal 

gas constant, p is pressure, and A and n are constants dependent on the fuel, fuel 

injection, and air flow characteristics [11].  Heywood goes on to explain that there are 

many factors that affect the ignition delay, including mixture temperature, pressure, and 

equivalence ratio.  This is the typical equation used for data from combustion bombs and 

flow reactors [11]. 

Other correlations for predicting ignition delays have been prepared based on empirical 

formulas and give good agreement over a wide range of engine conditions.  One 

developed by Hardenburg and Hase predicts the ignition delay based on the cetane 

number of the fuel and the temperature and pressure during the delay at top dead center 

(TDC) conditions [155].  This equation from Hardenburg and Hase along with a 
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refinement from Prakash and coworkers [156] provided Garnier and coworkers an 

equation that was able to model the ignition delay for a syngas dual fueled engine above a 

30% substitution of the fuel [157].  The authors claim good agreement at 30% and above, 

but their figures show a margin of 1 crank angle degree above 50% substitution of the 

fuel between the experimental and predicted ignition delay, which indicated good 

agreement within a margin of 1 crank angle degree [157]. 

Karim has shown in his research the effect of the fuel and air mixture on the start 

of combustion timing in a dual fuel engine mode for various fuels [151].  While methane 

and hydrogen exhibited little change in the start of combustion timing over the various 

stoichiometric ratios, the start of combustion timing for ethylene and propane over 

various stoichiometric ratios varied widely [151].  

2.4.3 Post Combustion 

2.4.3.1 NOx Aftertreatment Devices 

The general method which exists for controlling NOx via post-combustion 

techniques involves some type of catalytic reaction, chemical reaction or a combination 

of both.  There are two types of catalytic reduction:  Selective Catalytic Reduction (SCR), 

and Selective Non-Catalytic Reduction (SNCR), both thermal and non-thermal [50].  The 

method that is most widely being considered is the SCR method, also most commonly 

known as DeNOx Catalysis.  In this method, a zeolite catalyst is used to absorb NOx 

molecules.  A reagent is injected into the exhaust stream to chemically reduce the NOx.  
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Previously, the typical reagent used was the fuel itself, which reduces the efficiency of 

the vehicle.  However, it is common now to use urea. It should be noted that this process 

works in a small temperature band (200-250 0C for precious metal zeolites and 400-450 

0C for base metal zeolites), and for vehicles the NOx reduction is low and selectivity is 

poor [158].   

The predominant method of selective catalytic reduction uses ammonia or urea as 

the reductant [159].  Studies with these types of catalyst applications have shown 90% 

reduction and higher can be achieved with an SCR catalyst and urea as the reductant 

[160, 161].  Testing has been completed using SCR, EGR, and intensive engine mapping 

which resulted in dramatic reduction of NOx emissions [162]. 

The following reactions, Eq. 2.21 through Eq. 2.25, describe the primary chemical 

reactions that occur in the ammonia SCR system.  All of these reactions are occurring in 

the catalyst to reduce NOx down to elemental nitrogen and water.  Reaction Eq. 2.22 is 

the dominant mechanism for NO reduction [163]. 

 

 

 

 

6NO + 4NH3 = 5N2 + 6H2O 2.21

4NO + 4NH3 + O2 = 4N2 + 6H2O 2.22

6NO2 + 8NH3 = 7N2 + 12H2O 2.23

2NO2 + 4NH3 + O2 = 3N2 + 6H2O 2.24
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 Current research is focusing on the use of SCR with urea as the reductant and 

Lean NOx traps (LNTs) to meet emissions in Europe for 2009 and beyond, with 

technology which can also be applied to vehicles in the US market [164].  For vehicle 

aftertreatment, a combination of LNTs and SCRs is also being considered, with the LNT 

being used to provide ammonia to the SCR during rich regenerations [164].   For heavy 

duty engines, exhaust temperatures are high enough to provide the heat necessary for the 

urea to hydrolyze to ammonia and for reactions to take place.  However, in light duty 

diesel engine applications, exhaust temperatures are too low for appropriate operation of 

the NOx reduction with either a LNT or SCR in conjunction with particulate matter 

reduction over the catalyst [165, 166].   To achieve ULEV II standards (.05 g/mi NOx), 

Tennison and coworkers used a fast warm up routine with the engine to gain the required 

light off temperature for the SCR within the first 100 seconds of operation [167].  

Ogunwumi and coworkers are working on in-situ methods via an ammonia generating 

catalyst to generate ammonia so that urea is not required as an added on board reductant 

[168] . 

2.4.3.2 Particulate Matter Aftertreatment Devices 

Diesel particulate emissions pose a significant potential health hazard.  Control of 

diesel particulate emissions is an issue requiring the attention of the fuels, engine and 

aftertreatment industries.  To achieve the reductions in particulate emissions mandated by 

NO + NO2 + 2NH3 = 2N2 + 3H2O 2.25
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the US Environmental Protection Agency in 2007, use of diesel particulate filters (DPF) 

will be a necessity [169].  

There are two groups of diesel exhaust aftertreatment devices: particulate traps 

and diesel oxidation catalysts. Diesel particulate traps, which are primarily filters, control 

diesel particulate matter emissions by physically trapping the particulates. The major 

challenge in the design of a diesel particulate trap system is to regenerate the trap by 

oxidizing the collected particulate matter in a reliable and cost-effective manner [170].  A 

critical requirement for implementation of diesel particulate filters on diesel-powered 

vehicles is having a low “break even temperature”, or balance point temperature, defined 

as the temperature at which particulate deposition on the filter is balanced by particulate 

oxidation on the filter and indicated by exhaust restriction.  This balance point needs to 

occur at sufficiently low temperatures to fit within the exhaust temperature range of a 

typical diesel vehicle’s duty cycle.  Catalytic coating on the diesel particulate filter, use of 

a fuel-borne catalyst and oxidation catalysts placed upstream of the particulate filter can 

all reduce this balance point temperature [171].  
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Chapter 3 
 

Experimental Setup 

3.1 Introduction 

This chapter provides details of the experimental set up and the methods used for 

this research.  First, the general engine system used for both experiments will be 

described.  Further detail on modification to the engine systems for each experiment are 

contained in the respective chapters.  Then, a detailed description of the equipment used 

for the collection of the experimental data will be provided in additional sections.  A 

review of the engine and emissions equipment repeatability will be discussed.  

3.2 Engine Description 

A Detroit Diesel Corporation (DDC) 2.5 L 4-cylinder turbocharged direct 

injection engine (built by VM Motori, Italy) was used for both experiments described in 

the Chapters 4 and 5.  The engine, made for the European market by VM Motori, was 

purchased by DDC and was sold to Chrysler for inclusion in their Jeep Cherokee CJ 

vehicles for the European and South American markets.  The engine is configured with a 

Bosch common rail fuel injection system.  It is shown below coupled with the 5 speed 

manual transmission in Figure 3.1.  The performance curve of the engine is shown in 

Figure 3.2. 
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Figure 3.1:  Detroit Diesel Corporation 2.5L Engine 

 

 
Figure 3.2:  Engine Rating of the 2.5L Detroit Diesel/ VM Motori Engine [172] 
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The DDC 2.5L engine is described in Table 3.1.  The standard fuel injection 

strategy is comprised of a pre-injection followed by a main injection to reduce emissions 

and engine noise.   

A 250HP Eaton eddy current water-cooled dynamometer was coupled to the 2.5L 

DDC engine to generate load.  The engine and dynamometer were controlled by a 

Digalog Testmate control unit.  

3.3 Engine Test Stand Data Acquisition 

 A time based data acquisition program was managed using a custom programmed 

National Instruments Labview virtual instrument (VI).  The data acquisition program was 

set up to collect the steady state operational data from the engine’s operation.  The VI 

was created to capture the engine and exhaust status via analog signals from pressure 

Table 3.1: DDC 2.5L Engine Specifications 

Engine DDC 2.5L TD DI-4V  automotive diesel engine 
Displacement 2.5L 
Bore 92mm 
Stroke 94mm 
Compression Ratio 17.5 
Connecting rod length 159mm 
Rated Power 103KW@4000 RPM 
Peak Torque 340Nm@1800 RPM 
Injection system Electronically controlled common-rail (Bosch) 
Valve train 4 valves/cylinder 
Intake Valve Opens 15.6° ATDC 
Intake Valve Closes 64.4° ABDC 
Exhaust Valve Opens 66° BBDC 
Exhaust Valve Closes 32° ATDC  
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transducers, thermocouples, and serial communication from the fuel scale and emissions 

equipment.  The signal inputs were located on a series of external computer modules, 

which were a collection of National Instrument Field Point Modules connected to a 

command module (FP-2015) to run the VI, and save the data.  The data collected by the 

Field Point Modules was saved every 10 seconds during 20 minutes of sampling per test.  

Information regarding fuel consumption by the engine was collected by this program via 

serial communication.  Gaseous emissions measurements from the ALV CEB II were 

collected via serial communication and also recorded.  

3.4 Diesel Fuel Flow Rate 

 The engine fuel comsumption was measured using a Sartorius model EA60EDE-

IOUR precision scale that has an accuracy of ± 2g.  The custom LabView VI calculated 

the diesel or biodiesel fuel consumption rates based on 100 measurements of fuel tank 

mass, tracking the small change in mass over 60 seconds.  

3.5 Engine Control Unit 

 The electronic control unit (ECU) is the computer that controls engine operation. 

An unlocked ECU was used to modify and control main injection and pilot injection 

timings, as well as, EGR valve position, and fuel rail pressure. The unlocked ECU was 

connected to an ETAS MAC 2 unit via an ETK connection. The MAC 2 unit was 
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connected to a PC running ETAS INCA v5.0 software. INCA managed the ECU 

modifications in real-time.  

3.6 Exhaust Gas Recirculation 

 The DDC 2.5L engine regulates exhaust gas recirculation (EGR) rates using an 

ECU map based on engine speed and injection volume.  The ECU map dictates the flow 

rate by varying the amplitude of the signal sent to a proportional pneumatic valve.  The 

stock DDC 2.5L engine then introduces EGR to the intake manifold via a Y-pipe.  When 

EGR was used in the experiment, the ECU was allowed to control the EGR per the ECU 

map.  When the EGR was not used, the EGR signal to the proportional pneumatic valve 

was disconnected. 

3.7 Gaseous Emissions Equipment Description 

3.7.1 Gaseous Emissions: AVL Combustion Emissions Bench II (CEB II) 

  Gaseous emissions were measured using analyzers integrated into an AVL 

Combustion Emissions Bench II  (CEB II) emissions bench.  Exhaust gases were kept at 

a constant temperature of 1900C with a heated sample line.  NOx emissions were 

measured without exhaust cooling using an EcoPhysics chemiluminescence analyzer.  A 

portion of the sample gas was chilled to remove moisture from the sample before being 

analyzed with Rosemount CO (IR), CO2 (IR), and O2 (paramagnetic) detectors.  NO2 
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emissions were determined by subtracting the NO result from the total NOx result.  Total 

hydrocarbons and methane were also collected on separate ABB Flame Ionization 

Dectector (FID) analyzers.  All gaseous emissions were sampled continuously throughout 

the testing and measurements were automatically logged by the data acquisition system 

every 10 seconds via serial communication. 

Each analyzer has a separate calibration range.  Those are shown in Table 3.2.   

Each analyzer has a 1% of full scale instrument error, in addition to an R2 % error in the 

calibration curve of the instrument.  

3.7.2 Gas Chromatography (GC) 

Gas chromatography is a type of chromatography in which the mobile phase is the carrier 

gas, such as helium, and the stationary phase is a microscopic layer of liquid or polymer 

on an inert solid support, inside a glass or metal tubing, called a column [173].  The 

chemical constituents of the sample gas pass in the carrier gas stream at different rates 

depending on their various chemical and physical properties and their interaction with the 

specific column filling.  As the chemicals exit the end of the column, they are detected 

Table 3.2: AVL Combustion Emissions Bench II Analyzer Ranges 

Species Range  
THC (Total Hydrocarbons) 930 ppm 
O2 24 % 
CH4 9920 ppm 
CO2 19.10 % 
CO- Low 2451 ppm 
NOx 4557 
NO 4557  
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and identified electronically by the calibrations that have been made in the software 

based on retention time, and detector response.  The stationary phase in the column 

functions to separate different components that pass through the column and exit at a 

different time, which marks the retention time of the species [174].   

Gaseous emissions were collected in a HP 6890 Series GC that was configured 

with 2 Haysep D packed columns (stainless steel, 100/125 mesh size, 1/8" diameter) with 

different lengths (10 and 36 ft)  for both the flame ionization detector (FID) and the 

thermal conductivity detector (TCD).  The shorter column was used in conjunction with 

the FID for analysis of hydrocarbons, while the longer column was used with the TCD 

for analysis of permanent gases and water.   

The GC method used for this testing involved cooling the system to -15°C with 

liquid nitrogen, and then collecting data for 17 minutes at this temperature.  Next, the GC 

went through a ramp stage from -15°C to 225°C at 30°C per minute for a period of 7 

minutes.  Then, at the 25 minute mark, the system was at 225°C, and continued at this 

temperature for 10 minutes.  At the 35 minute mark, the testing was complete.   The inert 

carrier gas used was argon (30 ml/min for the first 16 minutes, and 60 ml/min for the 

remainder of the test).  The GC method used was configured for previous research and 

worked for this particular testing.  Although it was not the goal of this research to 

improve the existing method, the method provided information about this research, 

specifically the amount of DME left in the exhaust emissions.  

The GC chromatograms from the FID can give an indication of the change in the 

type of light hydrocarbons in the exhaust emissions for the C1-C6  range or species with 

a molecular weight less than or equal to a C6 compound [175]. In contrast, the AVL CEB 
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II gives bulk hydrocarbon concentrations for all hydrocarbons that are in the gaseous 

exhaust stream and that do condense below 190° C.   

3.7.3 Fourier Transform Infrared (FTIR) Spectroscopy 

Exhaust gas analyses was completed using a Nicolet Magna 550 Fourier 

Transform Infrared (FTIR) Spectrometer.  The FTIR spectrometer was calibrated to 

analyze for a range of 0-200 ppm of N2O.  The spectrometer cell temperature was 

maintained at approximately 132 ± 5 °C to prevent water from condensing from the 

exhaust gas.  The spectrometer cell pressure was maintained at approximately 680 ± 5 

mm Hg with a vacuum system and bypass balance valve.   

Throughout testing, the spectrum background was updated approximately every 

60 minutes.  Spectrum background sampling provided a reference point in terms of both 

the ambient and spectrometer operating conditions.  Spectrum background updates 

consisted of purging the FTIR cell with N2 for two minutes and then collecting a 

background spectrum. 

For each RPM/engine load data point, three spectrum traces were recorded.   The 

gaseous emissions concentrations obtained from each of the three sample traces were 

then averaged to obtain a representative concentration value for the particular 

RPM/engine load value. 
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3.8 Particulate Matter Emissions Equipment Description 

3.8.1 Particulate Emissions: Gravimetric Filters  

Particulate matter data was collected using a Sierra Instruments BG-2 Micro-

Dilution Test Stand, shown in Figure 3.3  [176].  A probe collects a sample of exhaust to 

be analyzed.  From the probe, the exhaust travels to a dilution tunnel that contains 

channels through which shop air is forced to quench the exhaust and dilute the particulate 

matter.  The quenched sample is then deposited onto a filter.  Finally, the exhaust gas is 

routed into the stand to determine other parameters such as temperature and mass flow 

[176].  

 

 

 
Figure 3.3:  Sierra Instruments BG-2 Micro-Dilution Test Stand [176] 
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The type of filter used is a Pallflex 90 mm membrane filter.  Each one is weighed 

and placed in a humidity chamber with a constant temperature, set at 25oC and 45% RH, 

for at least 24 hours before it is used.  After a sample is collected, the filter is placed back 

into the chamber for another 24 hours and weighed again.  From these measurements, the 

mass emissions of the particulate matter can be determined.   

 The BG-2 test stand must be set up before each day of testing.  This includes a 20-

minute computer warm up period and a 60-minute continuous purge of the sample line to 

clear out any debris from a previous day’s sampling.  A normalization filter is then used 

before taking actual data to clear out any residual debris from the line [176].  

Setting up the dilution ratio is crucial to how much particulate matter is deposited 

onto the filter.  Too low a ratio and not enough particulate matter will be deposited to 

reach an accurately measurable quantity, and vice versa.  This ratio ensures at least 100 

milligrams will be accumulated on the filter.   

The engine must reach steady-state conditions (exhaust temperature stabilization) 

before taking a data point to ensure a fair reading.  The exhaust is sampled for seven 

minutes, after which the BG-2 line valves are closed to protect the filter from any sudden 

pressure increase that could damage the filter and ruin the data point [76].  

 For the testing described in this thesis, particulate matter (PM) emissions were 

measured by sampling the exhaust using a Sierra Instruments BG-2 mini-dilution tunnel 

with a constant dilution air/sample flow ratio of 6:1, and a total flow of 60 L/min for a 

period of 7 minutes.  Filters were collected from the sampling for gravimetric analysis 

and visual inspection.  For each condition, only two filters were collected, weighed and 

analyzed accordingly.  While this provides an indication of the change in particulate 
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mass, it is not meant to give statistically significant results which would require 6 or more 

filters per test. 

3.8.2 Particulate Emissions: Tapered Element Oscillating Microbalance (TEOM) 

Particulate matter (PM) emissions were measured by sampling the exhaust using a 

Sierra Instruments BG-2 mini-dilution tunnel with a constant dilution air/sample flow 

ratio of 6:1, and a total flow of 60 L/min.  A portion of the diluted exhaust gas (3 L/min) 

was passed to a Rupprecht & Patashnick Tapered Element Oscillating Microbalance 

(TEOM) Series 1105 PM analyzer which measures the real-time particulate mass 

concentration (mg/m3).  PM is collected on a Teflon filter # TX40/57-007224-0020 sold 

by Thermo (formerly Rupprecht & Patashnick).   The software collects data on mass 

every half second as mass concentration (mg/m3) and translates that data into mass rate 

(g/sec) and total mass (g).  The analyzer includes an inertial balance that directly 

measures the mass that is collected on a filter cartridge.  The instrument monitors the 

change in the natural oscillating frequency of a tapered element over time as mass is 

collected on the filter.  The instrument is set to 3 L/min flow for exhaust gas, with the 

mass transducer temperature, internal head, and heated sample tube temperatures set at 

50°C.  Data is collected every 0.1 sec for mass rate and mass concentration averaging, 

with total mass being averaged at every 10 seconds.  The instrument can be used for 

transient and steady state PM emissions PM measurements.  Configuration files of the 

equipment and software are found in Appendix A. 
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3.8.3 Particulate Matter Emissions: Scanning Mobility Particle Sizer (SMPS) 

 The TSI 3936 scanning mobility particle sizer (SMPS) spectrometer measures 

particle size and number density from .0025 to 1.0 &m, and from 1 to 108 particles/cm3, 

respectively  The data is collected and displayed in up to 167 actual channels, or 64 

channels per decade.  The SMPS system includes the TSI series 3080 Electrostatic 

Classifier with a Differential Mobility Analyzer (DMA) and a series 3776 Condensation 

Particle Counter (CPC).  Aerosol Instrument Manager software is provided to simplify 

set up of the system, operation, data collection and analysis.  The SMPS has also been 

coupled with a Dekati series 3065 Thermal Denuder.   

 Before the sample enters the SMPS, it passes through the thermal denuder.  

Depending on the temperature setting of the instrument, hydrocarbons that have 

agglomerated on the particulate matter are volatilized off of the particles as the sample 

passes through the packed carbon bed.  When entering the SMPS system, the sample 

initially passes through a single stage impactor to remove large particles outside the 

measurement range.  Next, the sample passes through a bipolar ion neutralizer to create a 

high level of positive and negative ions.  The charged and neutral particles then enter the 

DMA in which the particles are separated according to their electrical mobility.  Neutral 

particles exit the DMA with the excess air.  Particles with negative charges are repelled 

towards and deposit on the outer wall of the DMA.  Particles with positive charges are 

attracted towards the inner electrode.  Particles within a narrow range of electrical 

mobility have the ability to pass through a narrow slit opening near the bottom of the 

DMA.  After the aerosol particles exit the DMA, they enter the CPC and are counted.   
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Through the ramping of the voltage of the inner electrode exponentially over a selected 

period of time defined by the test, the entire particle size distribution and number 

concentration are measured. 

 The particular instrument configuration used to collect the data in this experiment 

is shown in Table 3.3 .  The SMPS was connected to the exhaust system of the DDC 

engine in combination with the Sierra Instruments BG-2.  The BG-2 provided the vacuum 

to deliver the appropriate sample to the SMPS, and was adjusted to provide a 6:1 dilution 

ratio across the dilution tunnel filter system.  Four samples were collected for each data 

point.  The first two samples were discarded, and the remaining two points were averaged 

for the data presented in the figures.  

Table 3.3: SMPS Property configuration for data collection 

Hardware Setting Value Units Comment 
Impactor Type 0.071 cm For Flow rate between 1.0-2.2 lpm 
Sheath Flow 14 lpm   

Aerosol Flow 1.4 lpm 

Set below maximum of 1.5 lpm; BG-2 set 
to compensate for this flow at a dilution 
ratio of 6:1 

Size Range 6.26 - 237.1 nm   
Voltage Range 11 - 9848 V   
Scan Up time 90 sec   
Scan Retrace time 30 sec   
        
Scheduling       
Scans per Sample 1   Manual Triggering 
Number of Samples 4     
Total Sample Time 8 min   
        
Physical Properties       
Particle Density 1.2 g/cc   
Gas Viscosity 1.32 e-05 kg/(m s)   
Mean Free Path 6.65 e-08 m    
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3.9 Fuel Injection Needle Lift and Cylinder Pressure Data Collection and Analysis: 
AVL IndiCom 

 Pressure traces were collected from each cylinder at .1 crank angle resolution with 

an AVL GU12P pressure transducer connected to a Kistler 5010 Dual Mode charge 

amplifier.  The pressure transducers were located in the glow plug hole for each cylinder.  

The amplifier signal was collected by an AVL 621 IndiModul, which is a high speed data 

acquisition system that records the data in real time.  An AVL 365C Crank Angle 

Encoder is connected to the engine crank as a means to synchronize the pressure trace to 

the crank angle degree and top dead center.  The final data form the Indimodul is sent to a 

PC connected to the system. The real-time data file can then be saved by the AVL 

IndiCom 1.3 software with Concerto 3.90 as a set of pressure traces and as an averaged 

file.   

 For this research, a set of 200 pressure traces was collected and then saved.  The 

set of 200 traces were then averaged into one single trace and then saved.  With the 

IndiCom software, the pressure traces can be analyzed for many pieces of information of 

interest from the combustion process, including heat release.   

IndiCom uses the first law of thermodynamics for calculating the rate of heat 

release from the volume and pressure data collected by the Indimodule.  Losses are 

neglected.  The ratio of specific heats, gamma, used in the equation for the heat release in 

the IndiCom equation is 1.37 for a diesel engine.  The apparent rate of heat release 

algorithm is given in Eq. 3.1, with further explanation referenced form the AVL IndiCom 

manual and found in [177]. 
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Where: 

n is the interval (0.1 degree) 

2'is the polytropic coefficient (
v

p

c
c

+2  where cp is the temperature at a constant 

pressure and cv is the temperature at a constant volume of the fuel)  

P is the cylinder pressure 

V is the volume  

 

 As Heywood explains, a typical range of values for gamma for diesel heat release 

analysis is 1.3 to 1.35 [11].  However, the gamma will change values based on the 

constituents that are in the cylinder at a particular time during the compression and 

expansion strokes [11].  Heywood goes on to say that the appropriate value for gamma 

that will give the most accurate heat release is not well defined [11].    

 A Hall-effect needle lift sensor provided by Wolff Controls Inc. was used to 

obtain the injector needle lift of Cylinder 1.  This signal was brought into the AVL 621 

Indimodul, which was triggered by a crank angle signal from the AVL 365C angle 

encoder placed on the crankshaft.  The real-time Indimodul data was transferred to the 

PC with the AVL IndiCom 1.3 software and Concerto 3.90 for further analysis.  
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3.10 Description of Experimental Tests  

The detailed descriptions of each experiment and engine test conditions are given 

within the chapter for each experiment.  However, a brief description of the testing will 

be reviewed.  Each experiment had a different sent of engine testing conditions, in 

addition to some changes to the base engine configuration, or change in fuel injection 

strategy for the testing.  Fuel property information is found in Appendix C. 

For the research performed in Chapter 4 with the hydrogenated biodiesel, the first 

set of experiments was performed without Exhaust Gas Recirculation over 4 operating 

modes with the following test conditions shown in Figure 3.4 : 

 The second sent of tests with the hydrogenated biodiesel were performed at one 

engine mode: 1800 rpm and 61 ft-lbs of torque with a single pulse injection at 7° BTDC 

and without Exhaust Gas Recirculation.  

For the research performed in Chapter 5 with the mixed mode combustion 

process, the tests were performed at one engine mode: 1800 rpm and 61 ft-lbs of torque 

with a single pulse injection at various timings BTDC and without Exhaust Gas 

Recirculation.   

 
Mode Number Speed (rpm) Load (ft-lbs) 

1 1500 50 
2 1500 100 
3 1660 75 
4 1660 125  

Figure 3.4: DDC 2.5 L Engine Test Specification for NOx Reduction with Fuel 
Modification Experiments:  Hydrogenated Biodiesel 
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3.11 Repeatability Study of Engine 

The engine was operated over a period of days to perform a repeatability study.   

The test condition outlined in Chapter 5, 1800 rpm and 61 ft-lb torque and at a fuel 

injection timing of 7° BTDC, was used for the study.  As shown in Table 3.4 , the study 

was performed over three days, with the test data being collected between 10 am and 12 

pm (noon) on the various days.  The intake air temperatures were within 2 degrees over 

the tests.  The average speed was recorded within 3 rpm for a series of 60 data points.  

The load was recorded within 0.09 ft lbs for the same series of 60 data points.  

 The data for the tests is shown below in Table 3.5.  The emissions data error was 

computed to determine standard deviations for a series of 60 data points.  With the 

standard deviation and average, the error bars were computed to be within a range of 1to 

2 % for the emissions data.   

Table 3.4: Repeatability Study Engine Test Data: 1800 rpm and 61 ft-lb torque and at a 
fuel injection timing of 7° BTDC 

Date Time Speed (rpm) Load (ft-lbs) 
Exhaust Temp 

(C) 
Boost Air Temp 

(C) 
11/6/2007 11:53 AM 1801.6 60.91 287.9 27.3 
11/8/2007 10:22 AM 1800.8 60.89 285.8 27.6 
10/9/2007 11:05 AM 1802.5 60.96 277.5 25.5  

 

Table 3.5:  Repeatability Study Test Emissions Data: 1800 rpm and 61 ft-lb torque and at 
a fuel injection timing of 7° BTDC 

Date 
BSFC 
(g/kWh) 

BSEC 
(MJ/kWh) 

CO2 
(g/kWh) 

CO 
(g/kWh) 

NOx 
(g/kWh) 

Hydrocarbons
(g/kWh) 

11/6/2007 241.84 11.07 908.13 3.18 5.41 1221.19
11/8/2007 243.73 11.15 907.26 3.07 5.30 1005.90
10/9/2007 237.54 10.87 913.78 3.71 5.10 1248.15 
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 The NOx (g/kWh) data for the tests is shown in Figure 2.1 with error bars.  The 

variation between the data points shows a 5.7% difference over the three days.  
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Figure 3.5:  Repeatability Study Test NOx (g/kWh) Emissions Data: 1800 rpm and 61 ft-
lb torque and at a fuel injection timing of 7° BTDC 
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Chapter 4 
 

NOx Reduction through Fuel Modification: Hydrogenated Biodiesel 

4.1 Preface 

This chapter presents some new data and some previously published data from 

two American Chemical Society pre-prints [178, 179].  The initial project began with the 

assignment of a team of students from the class Fuel Science 504 : Problems in Fuels 

Engineering to address the biodiesel NOx effect.   The author has extended the research 

by finding a commercial hydrogenated biodiesel fuel and performing a series of engine 

tests and fuel property tests with the fuel.  There were several contributing authors to the 

current body of work.  The author’s contributions to this work include the engine tests 

and the viscosity tests.  Stephen R. Kirby contributed by measuring the derived cetane 

number in the Ignition Quality Tester and the calorific values of the fuels.  José 

Rodríguez-Fernández contributed by performing the Cloud Point and Pour Point tests.  A 

hydrogenated biodiesel fuel has a lower iodine value and is more saturated, and thus has a 

different percentage of the chemical compounds than would normally be found in soy-

based biodiesel.   In the tests, the fuel properties of the hydrogenated biodiesel are 

compared neat and in blends to the normal soy based biodiesel.  The engine tests involve 

fixing certain engine parameters to study their effect on the production of NOx from the 

combustion of the fuel. 
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4.2 Introduction 

Biodiesel is an alternative diesel fuel created by the conversion of oils, fats and 

fatty acids to methyl and ethyl esters via esterification processes [95].  A variety of 

vegetable oils, typically soybean oil in the United States, and animal fats provide the 

source of the triglyceride fats and oils [96].  Continuous feedstock growth and livestock 

production provide a constant supply of source material allowing biodiesel to be a 

renewable source of fuel, which can be created domestically. 

Additionally, biodiesel is miscible with petroleum-based diesel and works in any 

diesel engine with little or no modifications as pure biodiesel or as a blend with any other 

diesel fuel.  But, the Engine Manufacturers Association recommends no more than 5% 

blends of biodiesel[180].  Biodiesel is a cleaner burning fuel and reduces most harmful 

emissions such as particulate matter, unburned hydrocarbons and carbon monoxide [53, 

98]. 

However, a few issues need to be resolved before biodiesel fuels can be a 

prominent alternative fuel.  The economics of providing an appropriate source material 

and of producing an affordable final product to create acceptable biodiesel fuels must be 

favorable.  At present, there are significant quality control issues in the biodiesel 

industry[181-183].  Moreover, engine emissions of oxides of nitrogen typically increase 

when using biodiesel fuels [53].    

One approach to combat this “biodiesel NOx effect” is to increase the degree of 

saturation of the ester molecules contained in the biodiesel.  This degree of saturation is 

measured as the iodine value of the fuel.  This report investigates a potential option that 
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may be used to achieve a higher degree of saturation:  hydrogenation of soybean oil prior 

to transesterification of the biodiesel fuel.   This research explored the approach of 

achieving a more saturated biodiesel fuel and observing its effects on NOx emissions in 

various fuel blends.  A hydrogenated soy methyl ester was mixed with an ultra low sulfur 

diesel fuel and tested in a light duty diesel engine.  This hydrogenated fuel has a higher 

percentage of oleic acid methyl ester, and a reduction in the linoleic and linolenic methyl 

esters (yielding a fuel similar to that studied by Szybist et al. [119]). Previous engine and 

emissions testing on a light duty diesel engine revealed decreased NOx levels for some 

engine modes and an increase for other modes [178, 179]. 

4.3 Background 

4.3.1 Biodiesel Processing 

Vegetable oils and animal fats are mostly made up of triacylglycerols (TAG), 

which are often referred to as triglycerides.  The TAG are esters of fatty acids with 

glycerol as the backbone of the structure [184].  The fatty acids contained in the oil vary 

in the length of the carbon chains, as well as the number of unsaturated (double) bonds 

[185].  In order to be used as a diesel substitute, the vegetable oil triglycerides must be 

converted to methyl or ethyl esters.  This is accomplished through the process of 

transesterification [185].  In the transesterification process, the oil is reacted with a 

catalyst and an alcohol (usually methanol) to form the ester groups (usually methyl 
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esters) from the fatty acids that are found in the original oil[184].  Glycerine is a 

byproduct of this reaction and must be removed before the material can be used as a fuel. 

4.3.2 Hydrogenation Processing 

Hydrogenation is, “the addition of hydrogen to a double or triple bond to yield a 

saturated product” [65].  This option of saturation of the molecules is particularly 

attractive as the process of hydrogenation is already being conducted on an industrial 

scale and is a well established technology for edible fats and oils processing.  The reasons 

to hydrogenate a fat or oil are to change the physical form for functionality use, or to 

improve the oxidative stability [186].   The typical analytical evaluations for control of a 

hydrogenation batch are refractive index, iodine value, and melting points [186].  For this 

project, hydrogenated soy methyl ester was available commercially and was used in the 

engine testing.   

According to the supplier of the hydrogenated biodiesel, the product is made by 

the typical hydrogenation process.  Once at their facility, the further change the product 

by the following process.  Refined and bleached (RB) soybean oil is purchased from their 

supplier.  The RB process is aimed primarily at removing the impurities that come in with 

the crude vegetable oils.  Then, the RB soybean oil is combined with methanol and 

sodium methoxide (catalyst) in a reactor/settler that allows glycerine to settle out.  The 

processor drives the reaction through the addition of excess methanol and removal of 

glycerine.  The crude methyl ester is flashed to remove excess methanol, washed with 

water to remove soap, catalyst, glycerin, and methanol.  There is a final drying stage to 
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remove any water and methanol that is left over.  Finally, atypical to the industry, the 

processor distills the product to create a water white methyl ester product, separating it 

from heavy impurities such as un-reacted glycerides [187].   

Table 4.1  lists the chemical properties of a hydrogenated soy biodiesel used in the 

previous research [179] and this study.  The fuel reports are also found in Appendix E. It 

is important to note the shift in the methyl oleate (C18-1) composition of the fuel from a 

typical soy methyl ester.   

 

 

Table 4.1: Chemical properties of and Fatty Acid content of the Hydrogenated Soy 
Biodiesel (GCMS from supplier) 

Property Value 
% C12 0.0 
% C14 0.0 
% C16 12.3 
% C18 87.2 
Iodine Value 90 
Methanol 0.0 
Acid Value 0.14 
  

GC Compound % Composition 
C16 12.31% 
C18 7.81% 
C18-1 58.17% 
C18-2 20.24% 
C18-3 0.92% 
C22 0.53%  

 

587



76 

 

4.3.3 Iodine Value and NOx Emissons 

Iodine Value is an analytical technique used to measure the amount of unsaturated 

fatty acids present in an oil.  The Iodine Value, according to AOCS Method Cd 1-25, is 

obtained by reacting  a fat with a known amount of halogen, iodine, or iodine chloride 

[186].  Through the reduction of the excess halogen with KOH and titration with a 

standard sodium thiosulfate using a starch solution as the indicator of the free iodine, the 

amount of iodine consumed by the fat is determined [186].  The final value is represented 

as the percent of iodine absorbed.  A higher number means that a higher degree of 

unsaturated fatty acids are present [186].  

According to Figure 4.1 from McCormick and coworkers [99], as the iodine value 

of the fuel decreases, the NOx level will decrease as well.  Biodiesel from soy typically 

gives an Iodine Value of 130.  Since the hydrogenated biodiesel has an iodine value of 

90, there should be less NOx emissions from the engine in grams NOx per gram 

horsepower-hour.  Diesel fuel is typically given an iodine value of 10.   
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4.4 Initial Experimental Tests and Data 

The intent of the project is to decrease the NOx emissions from biodiesel 

combustion through the saturation of the biodiesel methyl esters, specifically methyl 

esters made from soybean oil.  Data previously reported by the author involved the use of 

an ultra low sulfur diesel (ULSD) (British Petroleum 15ppm sulfur content fuel- BP15) as 

the base fuel and the hydrogenated soy methyl ester was blended at 50 vol% (B50)[179]. 

The data was collected from a Detroit Diesel Corporation (DDC) 2.5L 4-cylinder 

turbodiesel engine, configured with a Bosch common rail fuel injection system.   

The fuel injection strategy is comprised of a pre-injection followed by a main 

injection to reduce emissions and engine noise.  For these tests, the engine was allowed to 

operate as it was calibrated for normal vehicle operation.  The experimental tests 

 

 
Figure 4.1:  Iodine Value vs. NOx emissions[99]. 
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followed the prescribed AVL 8-mode testing conditions as outlined in Table 4.2 below 

for this particular engine. 

Based on the data presented in Figure 4.2 , there is a NOx reduction for 5 of the 8 

modes for this particular engine.  However, there is an increase in NOx for the three low 

speed modes for the engine, which is where the engine might operate for 1/3 of the time, 

in a typical duty cycle for a light duty vehicle.  

Table 4.2: AVL 8-mode test for the DDC 2.5L turbodiesel engine [179] 
 

Mode Speed (rpm) Load (ft-lbs) 

1 1000 0 
2 1330 51.7 
3 1630 148.7 
4 1960 210.5 
5 4000 39.8 
6 3850 91.5 
7 3850 157.8 
8 3670 224.2 
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The Brake Specific Fuel Consumption (BSFC), shown in Figure 4.3, is higher for the 

biodiesel blend due to the decrease of the lower heating value from the biodiesel portion 

of the fuel.  Therefore, the engine required more fuel to achieve the speed and load 

condition. 

There is an increase in CO emissions which is not consistent across the modes, 

presented in Figure 4.4.  At high speeds, this difference becomes small between the fuels. 
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Figure 4.3:  BSFC (g/kWh) vs AVL 8 mode test [179] 
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The data collected was an average of two data points for each fuel, which is 

insufficient to obtain a measure of the statistical significance of the results.  Additionally, 

the engine was not equipped at the time with the ability to collect pressure traces which 

would enhance the analysis to include the ignition delay of the fuels, as well as the effect 

of the pilot and main injections on the heat release.   

After reviewing this initial data, a significant change in NOx emissions was not 

observed as expected.  It was concluded that the effect of the EGR and of the injection 

timing may be impacting the outcome.  Therefore, another set of engine tests was 

performed to study the impact of the blending of the fuel on the NOx emissions, without 

the use of EGR.  This second study was conducted to gather more information about how 

the engine’s fuel injection system was operating, and to gather pressure traces and heat 

release information.  The set of experiments involved running the engine at the lower 
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speeds and loads and varying the blend levels of both the hydrogenated biodiesel and a 

conventional soy based biodiesel.   

4.5 Second Set of Experimental Tests 

 A set of engine tests was performed with the hydrogenated biodiesel fuels, to 

compare to a conventional biodiesel fuel.  The tests were performed with no engine EGR, 

but with the normal pilot and main fuel injection pulse, but not held to a fixed timing via 

the INCA/ETAS system.  Fuel property tests were also conducted.  

 Engine conditions for this set of tests were limited due to complications with the 

engine driveshaft.  Although the goal was to span engine speed and load while using the 

engine as it was normally programmed to operate, that was not possible. The test 

conditions are shown in Table 4.3 .  Four engine modes were tested, with no EGR applied 

and with the normal pilot and main fuel injection pulse.  Emissions data and TEOM PM 

data were collected.  The emission data was collected through a labview program that 

was connected to the AVL CEB II.  The engine operating data was collected with a Leeds 

& Northrup MicroMax data system.  

Table 4.3: DDC 2.5L Engine Test Specification 

 
Mode Number Speed (rpm) Load (ft-lbs) 

1 1500 50 
2 1500 100 
3 1660 75 
4 1660 125  
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4.6 Fuel Property Tests and Results 

 To understand the physical changes that arise in the fuel based on a change in the 

chemical composition of the fuel (in this case via the hydrogenation of the fuel), some 

tests were conducted on the fuels to identify the change in properties.  The tests and the 

results are described in the following sections.  When the normal biodiesel fuel is shown 

in a table, a capital B is used.  For the hydrogenated biodiesel, a capital H is used.  When 

the biodiesel is mixed with the diesel fuel in a blended amount, the amount is designated 

by a number following the capital letter.  For example, B20 represents 20% conventional 

biodiesel blended in diesel fuel.  

4.6.1 Cetane number by Ignition Quality Tester (IQT) 

 The derived cetane number (DCN) for each of the fuel blends was measured in 

accordance with ASTM D6890-07a [188].  A correlation has been developed to convert 

the measured ignition delay into a DCN, which is correlated with the CN measured by 

ASTM D613 (CFR Cetane Rating engine).  The ignition delay (defined as the elapsed 

time from injection to where the chamber pressure reaches Pinitial + 50 psi) under specified 

conditions is measured using the Ignition Quality Tester (IQT).  The instrument also 

calculates a standard deviation of the derived cetane number based on the number of 

sample repetitions.  The instrument is shown in Figure 4.5 .  The system is fully 

automated and an experiment consists of 15 pre-injections (to equilibrate system 

temperatures) followed by 32 injections.  The reported DCNs are the averages of these 32 

injections of pre-filtered fuels.  A sample of data from a single injection is presented as a 
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screen shot in Figure 4.6.  Table 4.4 shows the cetane number for the fuels based on 

ASTM D6890-07a.  As is shown in the table, the biodiesel fuel has a higher cetane 

number and thus a shorter ignition delay.  The hydrogenated biodiesel has a higher cetane 

number than the normal soy-based biodiesel.  Knothe and coworkers showed the cetane 

number associated with the specific fatty acid chain lengths [101].   Thus, an increase in 

the methyl oleate composition of the biodiesel fuel will increase the cetane number.  In 

previous work, Knothe coworkers also showed that the pre-combustion compounds 

formed with unsaturated fatty compounds had a lower cetane number, thus explaining the 

low cetane number for unsaturated biodiesel fuels [189].  

 

 

 
Figure 4.5:  Photograph of the Ignition Quality Tester (IQT) at the Penn State Energy 
Institute 
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Figure 4.6:  Sample data readout from the IQT.  Needle lift is displayed in yellow and 
combustion pressure in blue 

Table 4.4:  Derived Cetane Number (DCN) 

Sample Ignition Delay 
(ms) 

DCN Standard 
Deviation of DCN 

ULSD (BP15) 4.231 47.0 0.85 
B20 4.106 48.4 1.09 
B40 3.983 49.9 1.26 
B100 3.907 50.8 1.97 
H20 3.888 51.1 1.07 
H40 3.726 53.3 0.96 
H100 3.114 65.1 2.25 

   
B100- same batch/ 
different barrel 

3.723 53.4 2.16 
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4.6.2 Compound analysis 

The hydrogenated biodiesel was analyzed with GCMS method by the company 

supplying the sample.  The data is used to gain information on the compound 

composition of the fuel.  The biodiesel from AGP was analyzed by the USDA 

Agricultural Research Service with a similar GCMS method [190].  The reports are 

provided in Appendix E.  The sample reports from AGP are also provided in Appendix E.  

4.6.3 Cloud Point and Pour Point 

Cloud Point and Pour Point tests are described by ASTM D 2500-99 and D 97-

96a, respectively [191, 192].    The intent of the tests was to evaluate the cloud and pour 

point of the fuels according to ASTM D 2500-99 and D 97-96a, but that was impossible 

because of the available equipment. Just as ASTM rules show, different baths would have 

been necessary at 0, -18, -33, …  ºC, but only one was available [191, 192].  In addition, 

the lowest temperature reached, even with two external coolers, was only -24 ºC, so it 

was necessary to place the test jars directly into the cooling medium to perform the tests. 

Raw numbers observed for Cloud Point (CP) and Pour Point (PP) are shown in 

Table 4.5.  Pour Point is plotted in Figure 4.7  by fuel type.  Cloud Point is plotted by fuel 

in Figure 4.8.  Each sample was tested twice, and the identical values were measured.  

One of the major problems associated with biodiesel is the low cloud point and pour 

point [102].  Therefore, it is important to know the effect of the saturation on these 

properties.  As can be seen, both cloud and pour point increase with increasing 

percentage of biodiesel in the fuel, either with normal biodiesel or hydrogenated 
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biodiesel.  The more saturated hydrogenated biodiesel showed higher cloud and pour 

points (poorer cold flow properties) as it is widely reported in the literature [193, 194]. 

 

 

Table 4.5:  Cloud Point and Pour Point 

  
ULSD 
(BP15) B20 H20 B40 H40 B100 H100 

Cloud Point (˚C) -12 -10 -10 -9 -8 0 5 
Pour Point (˚C) -21 -18 -12 -12 -12 -6 0  
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Figure 4.7:  Pour Point (C) by fuel type (B percentage is the blend percentage in the fuel)
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4.6.4 Viscosity 

Viscosity is determined by using a timed method through the use of a capillary 

viscometers described in ASTM D 446-07 [195].  The procedure is described in ASTM D 

445-06 [196].  A Modified Oswald Viscometer was used, numbered R201.  For these 

tests, the fluid was placed in the viscometer bath set at 40° C for 30 minutes before the 

timed test.  A sample size of 10-15 measurements were collected and averaged.   The data 

is shown below in Table 4.6.  As shown by Knothe and coworkers, the kinematic 

viscosity of methyl esters is higher than petroleum diesel fuel, and the viscosity increases 
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Figure 4.8: Cloud Point (C) by fuel type (B percentage is the blend percentage in the 
fuel) 
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as the C18 molecule becomes more saturated [102, 197].  Thus, the hydrogenated 

biodiesel fuel will have a higher viscosity than the conventional soy-based biodiesel.  

4.6.5 Higher Heating Value 

 This test is performed per ASTM D5865-07 and is used to determined the 

calorific value of the component with a bomb calorimeter [198].    The results of the tests 

of the fuels are shown in Table 4.7.  As in seen in the table, the heating value of the two 

biodiesel fuels in less than that of the diesel.  The heating value of the hydrogenated 

biodiesel is slightly higher than for the conventional biodiesel as a result of the saturation.  

Knothe shows in his work that the heating value for methyl oleate is higher than the 

heating value for methyl linoleate and methyl linolenate [102].  Even with a change in the 

chemical composition of the biodiesel fuels, they have similar heating values.  

Table 4.6: Viscosity (cSt) for the various fuels and blends at (40C) 

Fuel Viscosity (cSt) 
ULSD (BP15) 2.52 
B20 2.68 
B100 3.96 
H20 2.80 
H100 4.61  
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4.6.6 Boiling Range Distribution 

The test for boiling range distribution is performed per ASTM D 2887 [199].  The 

boiling range distribution of petroleum fractions are determined by Gas Chromatography.  

The test is limited to samples with a boiling rage grated than 55 °C and a final boiling 

point of 538 °C, and having a vapor pressure sufficiently low to permit sampling at 

ambient temperatures.  The three neat fuels boiling ranges were tested, and the results are 

shown in Table 3.2.  Boiling range distribution provides information about the volatility 

of the fuel, and particular end points have shown trends with exhaust emissions, as for 

example T90 has trended with particulate matter mass.  As is shown in the table, the 

range for the ULSD is much broader than for the biodiesel fuels.  The two biodiesel fuels 

have similar boiling ranges.  

Table 4.7: Calorific Value (BTU/lb) of the Fuels 

Fuel Calorific Value (Btu/lb) 
ULSD (BP15) 19671 
B20 19177 
B40 18615 
B100 17115 
H20 19200 
H40 18715 
H100 17138  
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4.7 Engine Tests Results and Data Analysis 

The following sections show the data that has been analyzed and plotted. The set 

of tests involve examination of the fuel blends being over various engine speeds and 

loads without EGR.   

Table 4.8: Boiling Range Distribution (°C) of the Fuels  

% Off ULSD (BP15) BP(°C) B100 BP(°C) H100 BP(°C) 
IBP 115.0 326.9 326.4 
5 165.3 328.3 327.9 
10 184.7 333.3 328.9 
15 198.5 350.3 350.1 
20 210.9 350.9 350.9 
25 220.7 351.3 351.5 
30 230.8 351.6 351.9 
35 239.4 351.9 352.3 
40 249.3 352.1 352.6 
45 257.5 352.3 352.9 
50 266.7 352.5 353.2 
55 275.6 352.7 353.4 
60 285.1 352.9 353.7 
65 293.6 353.1 353.9 
70 301.0 353.3 354.1 
75 311.7 353.4 354.4 
80 321.2 353.6 354.6 
85 333.1 353.8 354.9 
90 348.3 354.0 355.3 
95 368.3 354.8 355.9 

FBP 429.0 360.6 361.4  
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4.7.1 Fuel Tests over various Engine Modes 

 The set of data represents the fuels and their blends being tested over various 

engine modes.  Gaseous emissions and particulate matter data were collected.  Emissions 

results are shown in Figure 4.9 - Figure 4.12.  Fuel consumption results are shown in 

Figure 4.13 - Figure 4.15.  Exhaust Temperatures are shown in Figure 4.16.  

 As shown in Figure 4.9 and detailed in previous literature, NOx increases with the 

addition of 20% soy-based biodiesel to the diesel fuel in comparison to the conventional 

diesel fuel.  Over the various modes, the increase in NOx emissions is different: Mode 1- 

20.2 % increase, Mode 2- 4.6 % increase, Mode 3- 2.3 % increase, and Mode 4- 10.8 % 

increase.  However, previous research has suggested a 1% increase in NOx emissions for 

a 10% increase in biodiesel blended in diesel fuel [53].  The data in this research with a 

light duty diesel engine refutes the given general trend for heavy duty diesel engines over 

the past 40 years collected in older engine equipment and in various engine test cycles.  

As shown in this research and by other researchers, the NOx emissions increase with 

load, as shown quite clearly in Modes 2 and 4  in comparison to Modes 1 and 3[122, 

200].  Therefore, it is clear that the general trend with biodiesel and NOx emissions does 

not take into account the change in engine testing conditions and engine equipment, 

although this new data suggests that it does not adequately represent the trend.  

 This data also shows a difference in the NOx data shown by Zhang in his work 

with the same engine and with a B40 blend.  Mode 3 is the comparable point.  Zhang 

showed that with the B40 blend, there was a slight reduction in NOx emissions (brake 

specific – g/kWh) with the double injection strategy [121].  However, the injection 
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strategy in this research, as shown later in the needle lift data, was different. The pilot 

injection was not as advanced as in Zhang’s research [121].   This indicates that phasing 

of the pilot injection to the main injection can have some significant impact on NOx 

emissions.   

 For the 40% soy-based biodiesel addition, a decrease in NOx emissions over 

conventional diesel was observed:  Mode 1- 11.7% decrease, Mode 2- 13.8 % decrease, 

Mode 3- 14.3% decrease, Mode 4- 3.3% decrease.  As suggested by the literature, 

hydrogenated biodiesel gives lower NOx emissions [99], and that is shown in this data 

set.  The addition of 20% and 40% of the hydrogenated biodiesel fuel gave similar NOx 

emissions, and these were similar to the 40% soy-based biodiesel.  At this point, there are 

two explanations that are apparent: 1) there is some change in the chemistry of the fuels 

with the B40 and then H20 and H40 blends that reduced the NOx emissions, and 2) this 

change in fuel chemistry along with the injection strategy of pilot and main timing led to 

this decrease.   
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 CO2 emissions are shown in Figure 4.10 .  The data for all 4 modes show CO2 

emissions in the approximate same range taking into account the error bars.  Mode 1 

shows an increase of 4.7% in the CO2 emissions for B20 with a decrease of 6.5 % for 

B40 in comparison to the baseline diesel fuel.  The H20 and H40 are similar to the 

baseline diesel, showing a decrease of .8 % and 3.1% respectively.  Mode 2 shows a 

similar trend as Mode 1.  Mode 3 shows relatively the same CO2 emissions for all fuels.  

Mode 4 shows an increase in CO2 emissions for the biodiesel fuels, with B20 an 8.3% 

increase, B40 an 8% increase, H20 a 7.8% increase, and H40 a 4.5% increase.   

 
 

0

2

4

6

8

10

12

14

16

1 2 3 4

Mode

N
O

x 
(g

/k
g 

fu
el

)  
   

.
bp15
b20
b40
h20
h40

Figure 4.9: NOx Emissions (g/kg fuel) for DDC 2.5L engine, Mode 1= 1500 rpm/50 ft-lb, 
Mode 2= 1500 rpm/100 ft-lb, Mode 3= 1660 rpm/75 ft-lb, Mode 4= 1660rpm/125 ft-lb, 
with pilot and main injection, without EGR, for various biodiesel blends in comparison to 
baseline diesel fuel ULSD (BP15) 
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 Hydrocarbon emissions are shown in Figure 4.11 .  As shown in the figure, 

hydrocarbon emissions decrease with increasing load.  Also, shown in all modes, but 

more pronounced in Mode 1, as the biodiesel blend is increased from 20 to 40 %, the 

hydrocarbon emissions decrease.  The hydrogenated biodiesel gives a reduction of 

hydrocarbons over all modes, and with the increasing % of blend in the baseline diesel.  

For the H20 blend, the percent reduction in hydrocarbons in comparison to the 

conventional diesel fuel are: Mode 1- 35.6%, Mode 2- 29.6%, Mode 3- 22.3%, Mode 4- 

23.6%.    
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Figure 4.10: CO2 Emissions (g/kg fuel) for DDC 2.5L engine, Mode 1= 1500 rpm/50 ft-
lb, Mode 2= 1500 rpm/100 ft-lb, Mode 3= 1660 rpm/75 ft-lb, Mode 4= 1660rpm/125 ft-
lb, with pilot and main injection, without EGR, for various biodiesel blends in 
comparison to baseline diesel fuel ULSD (BP15) 
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 CO emissions are shown in Figure 4.12 .  For Mode 1, an increase of 4.8% in CO 

is seen for the B20 blend, but decreases shown for all other biodiesel blends: B40 – 1.0%, 

H20-6.5%, and H40-9.7%.    For Mode 2, a decrease is shown for all biodiesel blends: 

B20 – 7.1%, B40 - 12.0%, H20 – 9.3%, and H40 – 17.2%.  For Mode 3, an increase of 

1.0 % in CO is seen for the B40 blend, but decreases shown for all other biodiesel blends: 

B20 - 4.8%, H20 - 8.6%, and H40 - 12.3%.  For Mode 4, a decrease is shown for all 

biodiesel blends: B20- .7%, B40 - 4.6%, H20 - 6.1%, and H40 - 12.9%. 
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Figure 4.11: Hydrocarbon Emissions (g/kg fuel) for DDC 2.5L engine, Mode 1= 1500 
rpm/50 ft-lb, Mode 2= 1500 rpm/100 ft-lb, Mode 3= 1660 rpm/75 ft-lb, Mode 4= 
1660rpm/125 ft-lb, with pilot and main injection, without EGR, for various biodiesel 
blends in comparison to baseline diesel fuel ULSD (BP15) 
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 Fuel consumption is shown in Figure 4.13 .  As shown in the data, the fuel 

consumption error bars make it difficult to determine a change in the actual consumption.  

However, it would be expected that as the soy-based biodiesel and hydrogenated 

biodiesel are blended into diesel fuel, more fuel would be required since the calorific 

values of both fuels are lower than diesel.  It should also be noted that the fuel injector 

delivery operates on a volume fuel injection, and the density of the soy-based biodiesel 

and hydrogenated biodiesel are similar, and higher than the convention diesel fuel.  

Therefore, as the engine would need to adjust to inject more of the biodiesl fuel to 

compensate for the lower calorific value, it would also be adjusting to deliver less volume 

to compensate for the change in density.  Table 4.9 shows the percent change in fuel 

consumption (g/hr) in comparison to conventional diesel fuel.   
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Figure 4.12: CO Emissions (g/kg fuel) for DDC 2.5L engine, Mode 1= 1500 rpm/50 ft-lb, 
Mode 2= 1500 rpm/100 ft-lb, Mode 3= 1660 rpm/75 ft-lb, Mode 4= 1660rpm/125 ft-lb, 
with pilot and main injection, without EGR, for various biodiesel blends in comparison to 
baseline diesel fuel ULSD (BP15) 
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 Brake Specific Fuel Consumption (BSFC) is shown in Figure 4.14 .  The fuel 

consumption based on the power delivery by the engine shows that slightly more 

hydrogenated biodiesel was needed for Mode 1 and 2, but approximately the same for the 

other modes.  The engine required the same soy-based biodiesel in comparison to the 

baseline diesel fuel for all 4 modes.  Table 4.9 shows the percent change in BSFC 

(g/kWh) in comparison to conventional diesel fuel.   
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Figure 4.13: Fuel Consumption (g/hr) for DDC 2.5L engine, Mode 1= 1500 rpm/50 ft-lb, 
Mode 2= 1500 rpm/100 ft-lb, Mode 3= 1660 rpm/75 ft-lb, Mode 4= 1660rpm/125 ft-lb,  
with pilot and main injection, without EGR, for various biodiesel blends in comparison to 
baseline diesel fuel ULSD (BP15) 
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Figure 4.14: Brake Specific Fuel Consumption (g/kWh) for DDC 2.5L engine, Mode 1= 
1500 rpm/50 ft-lb, Mode 2= 1500 rpm/100 ft-lb, Mode 3= 1660 rpm/75 ft-lb, Mode 4= 
1660rpm/125 ft-lb, with pilot and main injection, without EGR, for various biodiesel 
blends in comparison to baseline diesel fuel ULSD (BP15) 
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 Brake Specific Energy Consumption (BSEC) is shown in Figure 4.15.  This figure 

is based on the heating value of the fuel divided by the power output from the engine for 

the particular fuel.  Mode 1 and 2 show that more hydrogenated biodiesel is required for 

the same power output, but that the soy-based biodiesel and baseline fuels are relatively 

similar.  The Mode 1 soy-based biodiesel requirement for less fuel is not consistent with 

what would have been expected.  For Mode 3 and 4, the energy equivalent basis shows 

Table 4.9: Percent Change in Emissions in Comparison to Conventional Diesel fuel for
Fuel Consumpation (g/hr), Brake Specific Fuel Consumption (g/kWh), and Brake
Specific Energy Consumption (MJ/kWh) 

  Fuel (g/hr) BSFC (g/kWh) BSEC(MJ/kWh) 
b20       
m1 -6.1 -6.1 -8.5 
m2 0.6 0.6 -1.9 
m3 1.0 1.0 -1.6 
m4 -1.4 -1.4 -3.9 
        
        
b40       
m1 6.8 6.8 1.1 
m2 6.7 6.7 0.9 
m3 -1.7 -1.7 -7.0 
m4 -0.1 -0.1 -5.5 
        
        
h20       
m1 -2.5 -2.5 -4.8 
m2 2.0 2.0 -0.5 
m3 -0.9 -0.9 -3.3 
m4 -1.3 -1.3 -3.7 
        
        
h40       
m1 2.3 2.3 -2.7 
m2 6.0 6.0 0.8 
m3 1.1 1.1 -3.8 
m4 1.6 1.6 -3.4  
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the same fuel requirement for each fuel compared.  Again, this would not be expected 

since the fuels for this figure are adjusted for the difference in calorific value of the fuel.  

Table 4.9 shows the percent change in BSEC (MJ/kWh) in comparison to conventional 

diesel fuel.   

 Exhaust temperatures for each fuel are shown in Figure 4.16 .  These are 

downstream exhaust temperatures taken at the same exhaust point for each test.  As 

shown in the figure, Mode 1 shows an increase in the exhaust temperature for each 

biodiesel fuel blend, and with a slight increase for the 40% blend.  Mode 2 shows an 
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Figure 4.15: Brake Specific Energy Consumption (MJ/kWh) for DDC 2.5L engine, Mode 
1= 1500 rpm/50 ft-lb, Mode 2= 1500 rpm/100 ft-lb, Mode 3= 1660 rpm/75 ft-lb, Mode 4= 
1660rpm/125 ft-lb, with pilot and main injection, without EGR, for various biodiesel 
blends in comparison to baseline diesel fuel ULSD (BP15) 
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increase in the temperature for the B40, H20, and H40 blends.  In Mode 3 and 4, the 

exhaust temperature is the same or slightly above the baseline diesel temperature for the 

soy-based biodiesel, but a definite increase is shown for the hydrogenated blends.   

4.7.2 Pressure Trace and Heat Release Analysis 

 The following figures show the pressure trace and heat release analysis from the 

testing.  A set of 200 pressure cycles were collected for each cylinder.  In this group of 

figures, the data from cylinder 3 is represented as an averaged cycle from the 200 traces.   
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Figure 4.16: Exhaust Temperature (°C) for DDC 2.5L engine, Mode 1= 1500 rpm/50 ft-
lb, Mode 2= 1500 rpm/100 ft-lb, Mode 3= 1660 rpm/75 ft-lb, Mode 4= 1660rpm/125 ft-
lb, with pilot and main injection, without EGR, for various biodiesel blends in 
comparison to baseline diesel fuel ULSD (BP15) 
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 Pressure trace data from Mode 1 for the test fuels are shown in Figure 4.17 .  The 

plot shows similar pressure curves for each fuel.  The premixed and diffusion phases are 

pronounced and distinct in the plot. Table 4.10 shows the maximum pressure achieved by 

each fuel. 

 

Table 4.10: Mode 1 Maximum Pressure (bar) 

Fuel Type bp15 b20 b40 h20 h40 
Maximum Pressure (bar) 55.9 55.7 54.9 54.7 54.3 
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 Pressure trace data from Mode 2 for the test fuels are shown in Figure 4.18 .  The 

plot shows similar pressure curves for each fuel.  The premixed and diffusion phases are 

pronounced and distinct in the plot.  Table 4.11 shows the maximum pressure achieved 

by each fuel. 
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Figure 4.17: Mode 1 Pressure Trace Plot for DDC 2.5L engine, Mode 1= 1500 rpm/50 ft-
lb, with pilot and main injection, without EGR, for various biodiesel blends in 
comparison to baseline diesel fuel ULSD (BP15) 

Table 4.11:  Mode 2 Maximum Pressure (bar) 

Fuel Type bp15 b20 b40 h20 h40 
Maximum Pressue (bar) 67.0 66.4 64.9 65.4 65.1 
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 Pressure trace data from Mode 3 for the test fuels are shown in Figure 4.19 .  The 

plot shows similar pressure curves for each fuel.  The premixed and diffusion phases are 

pronounced and distinct in the plot.  Table 4.12 shows the maximum pressure achieved 

by each fuel. 
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Figure 4.18: Mode 2 Pressure Trace Plot for DDC 2.5L engine, Mode 2= 1500 rpm/100 
ft-lb, with pilot and main injection, without EGR, for various biodiesel blends in 
comparison to baseline diesel fuel ULSD (BP15) 
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Table 4.12:  Mode 3 Maximum Pressure (bar) 

Fuel Type bp15 b20 b40 h20 h40 
Maximum Pressue (bar) 66.0 65.4 62.9 63.6 63.4 
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Figure 4.19:  Mode 3 Pressure Trace Plot for DDC 2.5L engine, Mode 3= 1660 rpm/75 
ft-lb, with pilot and main injection, without EGR, for various biodiesel blends in 
comparison to baseline diesel fuel ULSD (BP15) 
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 Pressure trace data from Mode 4 for the test fuels are shown in Figure 4.20 .  The 

plot shows similar pressure curves for each fuel.  The premixed and diffusion phases are 

pronounced and distinct in the plot.  Table 4.13 shows the maximum pressure achieved 

by each fuel. 

 

Table 4.13:  Mode 4 Maximum Pressure (bar) 

Fuel Type bp15 b20 b40 h20 h40 
Maximum Pressue (bar) 75.8 73.9 72.9 72.7 72.7 
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 Heat release data from Mode 1 through Mode 4 for the test fuels are shown in 

Figures 4.21 through 4.24.  All heat release data plots shows similar rate of heat release 

curves for each fuel in each specific mode.  Based on the needle lift data plots for the 

pilot and main injection, the heat release data plots show a heat release for the each 

injection pulse. 
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Figure 4.20:  Mode 4 Pressure Trace Plot for DDC 2.5L engine, Mode 4= 1660rpm/125 
ft-lb, with pilot and main injection, without EGR, for various biodiesel blends in 
comparison to baseline diesel fuel ULSD (BP15) 
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Figure 4.21:  Mode 1 Rate of Heat Release Plot for DDC 2.5L engine, Mode 1= 1500 
rpm/50 ft-lb, with pilot and main injection, without EGR, for various biodiesel blends in 
comparison to baseline diesel fuel ULSD (BP15) 
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Figure 4.22:  Mode 2 Rate of Heat Release Plot for DDC 2.5L engine, Mode 2= 1500 
rpm/100 ft-lb, with pilot and main injection, without EGR, for various biodiesel blends in 
comparison to baseline diesel fuel ULSD (BP15) 
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Figure 4.23:  Mode 3 Rate of Heat Release Plot for DDC 2.5L engine, Mode 3= 1660 
rpm/75 ft-lb, with pilot and main injection, without EGR, for various biodiesel blends in 
comparison to baseline diesel fuel ULSD (BP15) 

622



111 

 

 

 

 

-10

0

10

20

30

40

50

60

-80 -40 0 40 80

 

bp15
b20
b40
h20
h40

R
at

e 
of

 H
ea

t R
el

ea
se

 (J
/d

eg
)

Crank Angle (deg)
 

Figure 4.24:  Mode 4 Rate of Heat Release Plot for DDC 2.5L engine, Mode 4= 
1660rpm/125 ft-lb, with pilot and main injection, without EGR, for various biodiesel 
blends in comparison to baseline diesel fuel ULSD (BP15) 
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4.7.3 Needle Lift 

 The following figures show the fuel injector needled lift analysis.  A set of 200 

needle lift cycles were collected for each cylinder.  In this group of figures, the data from 

the needle lift sensor applied in cylinder 1 is represented as an averaged cycle from the 

200 traces.   

 Needle Lift data from Mode 1 through Mode 4 for the test fuels are shown in 

Figures 4.25 through 4.28.  The needle lift data plots show similar needle lift curves for 

each fuel in each specific mode.   
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Figure 4.25:  Mode 1 Needle Lift Plot for DDC 2.5L engine, Mode 1= 1500 rpm/50 ft-lb, 
with pilot and main injection, without EGR, for various biodiesel blends in comparison to 
baseline diesel fuel ULSD (BP15) 
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Figure 4.26:  Mode 2 Needle Lift Plot for DDC 2.5L engine, Mode 2= 1500 rpm/100 ft-
lb, with pilot and main injection, without EGR, for various biodiesel blends in 
comparison to baseline diesel fuel ULSD (BP15) 
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Figure 4.27:  Mode 3 Needle Lift Plot for DDC 2.5L engine, Mode 3= 1660 rpm/75 ft-lb, 
with pilot and main injection, without EGR, for various biodiesel blends in comparison to 
baseline diesel fuel ULSD (BP15) 
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Figure 4.28:  Mode 4 Needle Lift Plot for DDC 2.5L engine, Mode 4= 1660rpm/125 ft-lb, 
with pilot and main injection, without EGR, for various biodiesel blends in comparison to 
baseline diesel fuel ULSD (BP15) 
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4.7.4 Bulk Cylinder Temperature 

 The following figures show the bulk cylinder temperature analysis from the 

testing.  A set of 200 pressure cycles were collected for each cylinder and bulk cylinder 

temperature was calculated.  In this group of figures, the data from cylinder 3 is 

represented as an averaged cycle from the 200 traces.   

 Bulk cylinder temperature data from Mode 1 for the test fuels are shown in 

Figure 4.29 .  The plot shows similar bulk temperature for each fuel, but with varying 

maximum temperatures.  Table 4.14 shows the maximum bulk temperature achieved.  As 

is shown in the table, the bulk temperature is higher for the biodiesel blends than for the 

diesel fuel.  The higher biodiesel blend does not produce a higher bulk cylinder 

temperature.   
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Figure 4.29:  Mode 1 Bulk Cylinder Temperature Plot for DDC 2.5L engine, Mode 1= 
1500 rpm/50 ft-lb, with pilot and main injection, without EGR, for various biodiesel 
blends in comparison to baseline diesel fuel ULSD (BP15) 

Table 4.14: Mode 1 Maximum Bulk Temperature (K) 

Fuel Type bp15 b20 b40 h20 h40 
Maximum Bulk Temperature (K) 1050.7 1082.9 1079.2 1079.3 1065.3 
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 Bulk cylinder temperature data from Mode 2 for the test fuels are shown in 

Figure 4.30 .  The plot shows similar bulk temperature for each fuel, but with varying 

maximum temperatures.  Table 4.15 shows the maximum bulk temperature achieved.  As 

is shown in the table, the bulk temperature is higher for the biodiesel blends than for the 

diesel fuel.  The higher biodiesel blend does produce a higher bulk cylinder temperature 

with all cases. 
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Figure 4.30:  Mode 2 Bulk Cylinder Temperature Plot for DDC 2.5L engine, Mode 2= 
1500 rpm/100 ft-lb, with pilot and main injection, without EGR, for various biodiesel 
blends in comparison to baseline diesel fuel ULSD (BP15) 

Table 4.15:  Mode 2 Maximum Bulk Temperature (K) 

Fuel Type bp15 b20 b40 h20 h40 
Maximum Bulk Temperature (K) 1263.6 1272.9 1273.6 1280 1292.8 
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 Bulk cylinder temperature data from Mode 3 for the test fuels are shown in 

Figure 4.31 .  The plot shows similar bulk temperature for each fuel, but with varying 

maximum temperatures.  Table 4.16 shows the maximum bulk temperature achieved.  As 

is shown in the table, the bulk temperature is higher for the biodiesel blends than for the 

diesel fuel.  The higher biodiesel blend does not produce a higher bulk cylinder 

temperature in all cases.  
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Figure 4.31:  Mode 3 Bulk Cylinder Temperature Plot for DDC 2.5L engine, Mode 3= 
1660 rpm/75 ft-lb, with pilot and main injection, without EGR, for various biodiesel 
blends in comparison to baseline diesel fuel ULSD (BP15) 

Table 4.16:  Mode 3 Maximum Bulk Temperature (K) 

Fuel Type bp15 b20 b40 h20 h40 
Maximum Bulk Temperature (K) 1157.6 1179.4 1170.5 1179.5 1183.7 
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 Bulk cylinder temperature data from Mode 4 for the test fuels are shown in 

Figure 4.32 .  The plot shows similar bulk temperature for each fuel, but with varying 

maximum temperatures.  Table 4.17 shows the maximum bulk temperature achieved.  As 

is shown in the table, the bulk temperature is higher for the biodiesel blends than for the 

diesel fuel.  The higher biodiesel blend does produce a higher bulk cylinder temperature.   
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Figure 4.32:  Mode 4 Bulk Cylinder Temperature Plot for DDC 2.5L engine, Mode 4= 
1660rpm/125 ft-lb, with pilot and main injection, without EGR, for various biodiesel 
blends in comparison to baseline diesel fuel ULSD (BP15) 
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4.8 Discussion 

There are two aspects to the data that deserve discussion.  First, the current 

theories for the biodiesel NOx effect will be reviewed while discussing the results of this 

set of experiments previously presented.  The nine theories follow with a brief discussion 

of each in relation to the data.  Second, the fuel injection strategy of this engine, with a 

pilot pulse and a main injection, provided an interesting set of results, but with a 

complicated set of mechanisms acting.  

4.8.1 Discussion of Biodiesel NOx Theories 

Adiabatic Flame Temperature 

From a general review of the calculation for the adiabatic flame temperature, it 

seems that one must know the enthalpy of formation for the specific fuel.  While some 

data on the methyl esters of biodiesel is available, there is not much data available on the 

specific carbon chain species that would allow an exact adiabatic flame temperature to be 

calculated [102].   However, a simple calculation was performed by Zhang comparing 

methyl oleate and a diesel surrogate fuel [201].  There is some thermophysical data 

Table 4.17:  Mode 4 Maximum Bulk Temperature (K) 

Fuel Type bp15 b20 b40 h20 h40 
Maximum Bulk Temperature (K) 1314.5 1337.6 1362.7 1359.2 1374.8 
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available in the NASA CEA to make this calculation.  As seen in Zhang’s results, the 

methyl oleate gave a lower adiabatic flame temperature for both the low load and high 

load conditions, and across various stoichiometries [201].  At stoichiometric conditions, 

the temperature difference was 20 K [201].  Zhang concluded that the adiabatic flame 

temperature difference could not explain the NOx emissions increase seen with biodiesel.   

In comparing Zhang’s calculation to the fuel property data for this research, it 

should be noted that the actual NOx emissions from Zhang’s work was based on a 

biodiesel fuel that had about 22% methyl oletate composition, which is the same soy-

based normal biodiesel used in this work. Those samples are represented as AGP#1 and 

AGP#2 in Appendix B.  The hydrogenated biodiesel had an approximate 69% methyl 

oleate composition, which more closely matches the calculation variable that Zhang used, 

assuming 100% methyl oleate.  Making this assumption, this data could explain the 

change seen in the reduction of the NOx for the hydrogenated biodiesel.  

Ban-Weiss and coworkers suggest that the higher flame temperature for biodiesel 

is related to the higher flame temperature seen with molecules that have double bonds 

[110].  Therefore, saturated molecules will have lower flame temperatures.  The 

hydrogenated biodiesel has 3 times more methyl oleate than the soy-based biodiesel, and 

as a result has a lower number of double bonded molecules.  This is also a good argument 

for explaining the reduction in NOx shown in Figure 4.9, which is then due to a reduction 

in the number of double bounded molecules in the fuel composition.   Table 4.18 shows 

the description of the methyl esters and their composition.  Table 4.19 shows the change 

in the composition to the fuel and how this affects the carbon, hydrogen, and oxygen 

composition, in addition to the number of double bonds available in the fuel. 
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 A calculation of the adiabatic flame temperature was made based on the higher 

heating value of the fuel to investigate whether the NOx increase with the soy based 

biodiesel, and the NOx decrease with the hydrogenated biodiesel could be attributed to 

the difference in temperature.  With the available compound information for the fuels, the 

enthalpy of formation was calculated from the balanced stoichiometric equation for the 

fuel.  Since the direct heat of vaporization information was not available, for simplicity, 

Table 4.18: Methyl Esters physical data and composition 

Methyl Esters MW Carbon Hydrogen Oxygen # Double Bonds 
Carbon 
Chain 

Myristic 228 14 28 2 0 14:00
Palmitic 256 16 32 2 0 16:00
Steric 284 18 36 2 0 18:00
Oleic 282 18 34 2 1 18:01
Linoleic 280 18 32 2 2 18:02
Linolenic 278 18 30 2 3 18:03
Arachidic 312 20 40 2 0 20:00
Behenic 340 22 44 2 0 22:00 

 

Table 4.19: Comparison between the B100 and H100 chemical composition (B100 here
is the AGP #1 in Appendix B.) 

Carbon 
Chain B100 Carbon Hydrogen Oxygen 

# 
Double 
Bonds H100 Carbon Hydrogen Oxygen 

# 
Double 
Bonds 

14:00           0.07 0.0002 0.0004 0.0000   

16:00 10.7 0.0348 0.0696 0.0050   11 0.0353 0.0705 0.0044   

18:00 4.5 0.0147 0.0294 0.0018   0 0.0000 0.0000 0.0000   

18:01 22.6 0.0743 0.1486 0.0083 0.2311 68.76 0.2296 0.4337 0.0255 0.6888 

18:02 52.3 0.1783 0.3367 0.0198 1.0695 18.44 0.0639 0.1137 0.0071 0.3694 

18:03 7.4 0.0454 0.0454 0.0030 0.2270 0.87 0.0031 0.0052 0.0003 0.0261 

20:00 0.3 0.0010 0.0020 0.0001   0.62 0.0020 0.0040 0.0002   

22:00           0.07 0.0002 0.0005 0.0000   

                      

Total 97.8 0.3485 0.6317 0.0380 1.5276 99.83 0.3344 0.6280 0.0376 1.0843  
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an assumption was made that this was constant across the three fuels.  With the enthalpy 

of formation and through the use of  HP Flame, a computer tool developed by Turns [31] 

and based on the Olikara and Borman routines [202], the adiabatic flame temperature was 

determined for varying stoichiometries at a pressure of 50 bar.  Figure 4.33 shows the 

results based on the calculations.  The ULSD and the H100 trend in a similar manner, 

while the B100 is higher by approximately 100K at "=1.  This data supports the theory 

that the higher NOx emissions shown for the B20 version are due to the higher adiabatic 

flame temperature for B100.   
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 The adiabatic flame temperature data presented here follows the trend shown by 

the modeling by Ban-Weiss and coworkers [110], that a more saturated compound will 

have a lower peak temperature than its comparable unsaturated compound, thus 

producing lower NOx emissions.  Cheng and coworkers also computed adiabatic flame 

temperature with modified version of the EQUIL module of the CHEMKIN software 

package [42].  Their modified version accounts for the mixing and vaporization of the 

fuel at the engine coolant’s conditions at the calculated motored TDC temperature and 

pressure to properly account for differences in the adiabatic flame temperature due to 

differences in the latent heat of vaporization of the fuels.  This yielded differences in the 

charge gas temperature after the fuels were vaporized [42].  They compared methyl oleate 

to a primary reference fuel for diesel for various stoichiometries and found that the 

adiabatic flame temperatures were the same up to " = 1.5.  Above this, the adiabatic 

flame temperature of the primary reference fuel was higher.  And, data presented by 

Zhang shows that the adiabatic flame temperature of methyl oleate is lower than a 

surrogate diesel fuel by 20K based on modeling with the NASA CEA chemical 

equilibrium code [203].  The adiabatic flame temperature data for methyl oleate from 

Zhang, and Chen and coworkers is similar in trends to the data presented here for the 

adiabatic flame temperature because the H100 fuel composition is approximately 60% 

methyl oleate.   

 

Flame Radiation 

Again, the theory about soot and flame radiation claims that the reduction in soot 

concentration reduces the soot radiation in the flame zone and thus the diffusion flame 
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temperature is higher and thus thermal NOx formation increases [113, 114].  There was 

no data collected in this research to verify or refute this theory, although the sooting 

tendency of the B20 and H20 fuels should have been similar, ruling out the effect of 

shifts in flame radiation causing the NOx effect.  

 

Mixing 

Musculus showed that as the pre-mixed burn fraction increases, the NOx 

emissions increase [113].  The pressure traces from this research, Figures 4.17 through 

4.20, show a consistent premixed and diffusion burn for each fuel and for each speed and 

load condition.   

 

Prompt NO 

Researchers have suggested that a change in the fuel chemistry, specifically the 

change in the number of double bonds in the biodiesel fuel, could be the reason for the 

increase in NOx emissions, via the prompt NO mechanism [110].  The data shown in this 

research would support the theory that a reduction in the number of double bounds 

produces a reduction in the NOx emissions, as shown in Figure 4.9 and Table 4.19.  

When the hydrogenated biodiesel fuel was used, a reduction in NOx emissions over the 

conventional biodiesel was achieved.  

 

Fuel Injection Timing 

The advance of injection timing with biodiesel fuel due to the physical property 

differences between diesel fuel and biodiesel fuel has been proposed and shown to be a 
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contributor to the NOx emission increase [103].  In this research, the needle lift data from 

fuel injector #1 was collected for each fuel and for each mode.  As shown in Figures 4.25 

through 4.28, the needle lift for each fuel had a pilot and a main pulse which did not 

change timing regardless of fuel.  This corresponds with the data previously for this 

engine and observations regarding common rail engines [121, 201].  The common rail 

engine seems to be less affected by a change in the fuel composition with regard to fuel 

injection timing.  However, as shown in the needle lift figures, there were some changes 

in the needle lift for the biodiesel fuels, indicating an increase in pressure to increase the 

height of the needle, thus allowing more fuel to enter the cylinder in a fixed timing.  

 

Cetane Number 

Previously, it has been expected that higher cetane number fuels will produce 

shorter pre-mixed burn fractions and thus lower NOx emissions [42].  In this research, the 

hydrogenated biodiesel has a higher cetane number and lower NOx emissions, as shown 

in Table 4.9 and Figure 4.9.  While this fits the stated theory, the soy-based biodiesel also 

has a cetane number higher than diesel fuel and lower than the hydrogenated biodiesel 

fuel.  As shown in the NOx emissions results, Figure 4.9, the soy-based biodeisel 

produced NOx emissions higher than the diesel, while the hydrogenated biodiesel 

produced NOx emissions at the same rate as the diesel fuel or lower than the diesel fuel.  

 

Mixture Stoichiometry at Lift Off Length 

Cheng and coworkers suggest that the mixture stoichiometry at the lift-off length 

of the fuel from the injector nozzle may be different between diesel and biodiesel and 
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thus plays a role in the NOx increase, but the mechanisms for this are unknown [42].  In 

Cheng and coworker’s research, the fuel spray penetration lengths were used to adjust the 

actual start of injection for each fuel to be able to exactly match the start of combustion 

by knowing the ignition delay [42].  While some experimental information is provided, it 

is unclear what changes were made in either the injection timing delay or pressure.  

However, their research provides insight that the spray, droplet break up, and fuel 

vaporization at the lift- off length are unknowns.  The research in this thesis does not 

support or refute this theory.  Injection pressure was allowed to vary with respect to the 

injection timing.  It is unknown if higher injection pressures produce longer lift-off 

lengths. 

 

Oxygen Content of the Fuel 

Some researchers suggest that the higher oxygen availability in the combustion 

chamber as a result of the oxygen in the fuel contributes to the NO formation process 

[126, 127].  This research compared two different biodiesel fuels with similar blend 

concentrations in diesel fuel.  After calculating the oxygen content by methyl ester carbon 

chain lengths, it was found that the oxygen content of the fuels is similar, as shown in 

Table 4.19.  Table 4.20 shows the ratios between carbon, hydrogen and oxygen for the 

two fuels.  The carbon to oxygen ratio is essentially the same for each fuel.  While the 

oxygen concentrations are similar, the NOx reductions are not, and thus no correlation 

can be made.  Therefore, the fuel bound oxygen would not be attributed to be a 

contributing factor in the NOx effect. 
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Fuel Spray Characteristics 

The fuel spray characteristics, including droplet size distribution, droplet inertia, 

air entrainment, penetration in cylinder, evaporation rate, and heat dissipation are affected 

by the various fuel properties [95].  These fuel properties include viscosity, surface 

tension, cetane number, and the boiling range temperature of the fuels [95].   

In a recent article by Boulanger and coworkers, the liquid properties of the C18 

methyl ester were compared to a C12 alkane representing diesel fuel to gain some insight 

into the change in physical properties of the fuel and how they affect NOx emissions 

[204].  For this simulation, C12 and C7 alkanes were chosen to serve as the reference 

case (n-dodecane for the liquid properties and n-heptane for the gaseous phase 

combustion properties).  The model compound to represent biodiesel was methyl 

linoleate.  The differences in the fuel properties and behavior were divided into 4 

groupings: 1) vapor pressure, heat of vaporization, and surface tension; 2) thermal 

conductivity within the droplet and heat capacity of the liquid; 3) density and viscosity 

changes, split into two sub-groups to separate the effect of dynamic viscosity from 

density; 4) full set of biodiesel properties [204].  Some interesting points from their 

findings:  

Table 4.20: Elemental ratios for the biodiesel fuels (C=carbon, H=hydrogen, O=oxygen) 

Ratio B100 H100 
H/C  1.81287 1.87809
C/H  0.55161 0.53246
C/O 9.17032 8.88758
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- It is expected that combustion takes longer for biodiesel and needs more 

time to vaporize as a result of the higher volatility, higher viscosity, and 

surface tension.  The higher viscosity and surface tension diminish the 

break-up efficiency if the fuel, thus favoring the diffusion mode of 

combustion.   

- Weaker fuel spray break-up due to higher viscosity of the fuel alone with 

no change in spray density advances the onset of heat release.  Their data 

suggests this, but they could not give an explanation for it.  

- Slower vaporization produces higher temperatures that last longer in the 

combustion cycle. 

- It was believed that momentum due to larger density helped to maintain 

droplet velocity and break-up in the long term. 

- A larger kinematic viscosity tends to lead to larger droplet size (Sauter 

mean diameter).  

- Because of slower evaporation, peak temperature occurs later during the 

expansion stroke and tends to be lower, but is higher during the end of 

the cycle. 

- The pressure traces of their research show that combustion phasing is 

governed by physical properties. 

- They conclude from their work that biodiesel NOx is a result of lower 

vaporization rate causing a longer spray penetration, the evaporating 

droplets sweeping a larger volume which cause fuel release into a larger 

ignitable zone, due directly to the lower volatility of the fuel.  The 
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volume of the reaction zone increases with higher temperatures.  This 

wider ignitable zone is suspected to contribute to the NOx increase. 

- When the kinematic viscosity and density of the fuel increase, the high 

temperature zone volume is not well developed and thus the maximum 

temperature is lower.   

 As is seen from the fuel property data for this research, section 4.7, the B100 and 

the H100 have higher kinematic viscosities than diesel fuel.  Thus, the advance in the 

start of combustion for the B100 and higher NOx could be attributed to the increased 

kinematic viscosity.  However, the in-cylinder data does not show any effect of advance 

in start of combustion with the biodiesel fuels.  From a analysis of the density of the fuels 

used, the densities of both the B100 and H100 are comparable, and slightly higher than 

the diesel fuel (BP15 .8339 g/ml; B100 .87785 g/ml; H100 .87276 g/ml).  Volatility 

information for the fuels is not available for comparison.  Therefore, it is unclear if 

Boulanger and coworkers theory that the higher density and lower volatility both produce 

a longer vaporization and larger droplets spray field zone, thus causing higher NOx 

emissions, would provide a good explanation for the emissions seen in this research.  

4.8.2 Fuel Injection Strategy on NOx emissions 

Several researchers have studied the effect of the multiple pulse injection and its 

impact on the combustion characteristics and emissions from diesel engines both with 

diesel and biodiesel fuels [122, 123, 200, 205].  The following section discusses their 

findings and relates them to the current body of research. 
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Choi and coworkers tested the effect of biodiesel fuels blends and multiple 

injections in a diesel engine [122].  In their high load condition, they showed that the 

NOx emissions between the base diesel and multiple pulse diesel fuel were roughly the 

same over various start of injection timings.  However, when comparing the B20 and B40 

blends with multiple injection of biodiesel to diesel fuel, the B20 blend produced more 

NOx emissions regardless of injection timing, where the B40 blend produced the same or 

less NOx emissions than diesel fuel.  At the low load condition, the double injection with 

the diesel fuel produced less NOx emissions as the start of injection timing was  retarded, 

producing lower NOx at -1CA ATDC [122].  The impact of the injection timing was also 

seen in the biodiesel data.  As the injection timing was retarded, the multiple pulse 

biodiesel blends produced less NOx than the single injection of the diesel and biodiesel 

blends, and less than the double injection of the diesel [122].  The effect of multiple fuel 

injections on fuel consumption was more significant in the high load than the low load, 

with increase seen as a function of start of injection timing [122].   

Zhang’s work showed how the interval of the pilot from the main fuel pulse could 

lower the emissions at his low load condition (1600 rpm /58.9 ft-lb) even further than 

with a single injection without the use of EGR [123].   While smoke emissions are 

impacted without the use of EGR, the NOx emissions can be managed well without an 

EGR if a pilot injection is used [123].  He also showed how the size, or the amount of 

fuel in the pilot, made an impact on NOx emissions.   

Tennison and workers showed multiple injections and injection pressure affected 

the smoke and NOx from an engine [206].  At the same injection pressure, a single 

injection had a better impact on NOx than a double injection, while smoke emissions 
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were significantly reduced [206].  In a second study on the pilot timing, as the pilot time 

was retarded, the NOx decreased and the soot increases.  However, as the pilot was 

advanced closer to the main injection, the NOx increased and the soot decreased [206].  

This study definitely showed how low NOx emissions can go with an increase in 

injection pressure [206].  They also concluded that ignition delay of the pilot quantity 

was dependent on a chemical delay and not a physical mixing delay, based on the data 

that showed that the point of ignition for the pilot injection was at the same crank angle 

regardless of the pilot timing [206].   

Carlucci and coworkers studied the effect of the pilot injection on the main fuel 

injection and then added a third injection called an “early” injection before the pilot 

injection [205].  With this strategy, they were able to successfully reduce smoke and NOx 

emissions over various engine conditions [205].  The early pilot strategy of injection of a 

quantity of fuel very advanced with respect to top dead center allows for the formation of 

a locally lean mixture in the engine cylinder.  This fuel is ignited by the pilot injection.  

By coupling the two injections, there was a weak heat release produced.  An increase in 

this early duration leads to a main combustion event that has a lower ignition delay and a 

premixed peak [205].  The experimental results showed that a short early injection 

coupled with the pilot injection was effective in reducing fuel consumption, NOx and 

soot levels [205].   

As evidenced by the needle lift traces, the injection strategy of the engine for this 

research involved a pilot and main injection.  With that strategy, two distinct heat release 

peaks were shown in the heat release plot for all 4 engine modes.  As indicated by 

Carlucci’s literature review, the pilot ignition combustion causes a reduction in the 
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ignition delay of the main injection, and as a consequence, a decrease in the rising rate of 

the cylinder pressure during the main combustion [205].  As he described it, the pilot 

injection decreases the ignition delay of the main injection thus reducing the fuel fraction 

burned during the premixed phase, leading to a reduction in the combustion temperature 

peak [205].  However, in this research comparing the diesel fuel with the biodiesel fuel 

blends, there is an observation of NOx emissions reduction with the hydrogenated 

biodiesel fuel, while there is a NOx increase with the soy-based biodiesel fuel in 

comparison with the diesel fuel.  This would lead one to conclude that while the pilot 

injection is playing a role in reducing the ignition of the main injection, there is not a 

consistent NOx emission given for each of the fuels.  Thus, there are fuel chemistry 

differences that must also be playing a role in the changes seen in the NOx emissions.  

It should be mentioned that there has been some research with a hydrogenated-

like biodiesel.  Knothe and coworkers tested a technical grade methyl oleate in a 2003 

DDC series 60 diesel engine with direct injection and electronic control [105].  The 

engine was fitted with high pressure electronic unit injectors, with EGR and an EGR 

cooler.  In their CFR 40 Part 86 Subpart N testing, they showed a 6% increase in the NOx 

emissions when methyl oleate was used while the biodiesel fuel used showed a 12% 

increase over diesel emissions [105].  It is unclear from their paper if there was any kind 

of unique fuel injection strategy during the engine operation.  A more recent set of 

experiments was performed by Tat and coworkers with a biodiesel made form high-oleic 

soybeans [207].  In their testing, a John Deere 4045T 4.5L 4 cylinder turbocharged direct 

injection diesel engine was used.  In their work, they showed a decrease in NOx 

emissions as compared to the soy- based biodiesel, but still an increase in NOx compared 
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with the diesel fuel [207].  The data in their paper indicate that this engine has a single 

injection pulse, and that the two biodiesel fuels were operating with a start of injection 

slightly retarded as a result of the isentropic bulk modulus change of the fuels [207].  It is 

suggested that these two groups of researchers found an increase in the NOx emissions 

for the high oleic biodiesel in an engine with a single injection pulse.  However, what is 

not clear is the impact of the EGR on the combustion process and on the results of the 

research.  

To clarify the fuel injection strategy question on NOx emissions, an additional 

test was performed in the DDC 2.5L engine at 1800 rpm and 61 ft lbs torque, at a fixed 

single injection timing of 7° BTDC.  Figure 4.34 shows the NOx data from the single 

injection case based on the fuel used.  The figure shows an increase with the B20 blend 

over the ULSD, and a decrease with the H20 blend.   
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 On a power basis, the NOx emissions for each biodiesel fuel are observed to be 

lower than the ULSD diesel fuel, as shown in Figure 4.35.  However, the small changes 

for the B20 are within the error bars for the data points, so nothing definitive can be 

stated about the difference.  The difference between the H20 and the ULSD are 

significant based on the error bars.   
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Figure 4.34: NOx (g/kg fuel) for DDC 2.5L engine, 1800 rpm and 61 ft-lb with single 
injection timing of 7° BTDC, without EGR, comparing ULSD (BP15) to 20% soy-based 
biodiesel to 20% hydrogenated soy-based biodiesel 
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Based on the previous two figures, it could be concluded that the fuel injection 

strategy plays no role in the change in NOx emissions between the fuels.  Testing with 

the neat fuels may increase the differences seen in the emissions, and thus show a clearer 

trend.  

Pressure data is shown in Figure 4.36.  The data has a 0.1 crank angle resolution.   

The pressure traces are similar for each fuel.   
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Figure 4.35: NOx (g/kWh) for DDC 2.5L engine, 1800 rpm and 61 ft-lb with single 
injection timing of 7° BTDC, without EGR, comparing ULSD (BP15) to 20% soy-based 
biodiesel to 20% hydrogenated soy-based biodiesel 
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 Heat Release data is shown in Figure 4.37.  As is shown, the heat release for the 

BP 15 diesel is the highest.  The peak duration lasts for an additional crank angle degree 

over the H20 peak duration.  B20 is slightly higher than H20, but follows the same trend 

in duration as the BP 15 diesel.   
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Figure 4.36:  Pressure (bar) per crank angle degree for DDC 2.5L engine, 1800 rpm and
61 ft-lb with single injection timing of 7° BTDC, without EGR, comparing ULSD (BP15) 
to 20% soy-based biodiesel to 20% hydrogenated soy-based biodiesel 
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 Bulk Cylinder Temperature data is shown in Figure 4.38 .  The temperatures 

calculated are similar for each fuel. 
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Figure 4.37: Heat Release (J/deg) for DDC 2.5L engine, 1800 rpm and 61 ft-lb with 
single injection timing of 7° BTDC, without EGR, comparing ULSD (BP15) to 20% soy-
based biodiesel to 20% hydrogenated soy-based biodiesel 
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 Needle Lift data from the instrumented fuel injector is shown in Figure 4.39.  

Because the needle lift sensor does not reset to the same location with each injection, the 

zero axis is normalized for each needle lift trace.  As is seen in the figure, the fuel 

injection starts at  -7° BTDC.  The B20 and H20 needled lift traces rise faster than the BP 
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Figure 4.38: Bulk Cylinder Temperature (K) for DDC 2.5L engine, 1800 rpm and 61 ft-lb 
with single injection timing of 7° BTDC, without EGR, comparing ULSD (BP15) to 20%
soy-based biodiesel to 20% hydrogenated soy-based biodiesel 
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15 diesel, indicating a higher pressure on the needle to deliver the appropriate quantity of 

fuel to meet the same power requirement.  More fuel would be required for the B20 and 

H20 blends as the energy density of the biodiesel is less than that of the BP 15 diesel fuel.  
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Figure 4.39: Needle Lift (mm) for DDC 2.5L engine, 1800 rpm and 61 ft-lb with single 
injection timing of 7° BTDC, without EGR, comparing ULSD (BP15) to 20% soy-based 
biodiesel to 20% hydrogenated soy-based biodiesel 

656



145 

 

Based on the combustion data plots presented, the slightly higher and longer 

duration heat release for the BP 15 diesel fuel could explain the higher NOx emissions.  

However, the needle lift trace shows a shorter (1° in comparison to the B20 and 2° in 

comparison to the H20) duration of fueling, which indicates a longer duration of fuel 

spray.  With a longer duration of fuel spray, there would be a shorter time for NO 

emissions, thus a lower amount of NOx.  On a fuel basis, the B20 NOx emissions were 

higher than the BP 15 diesel fuel.  Thus, this increase cannot be explained by the needle 

lift data.   

4.9 Conclusions 

 A study was performed to test the effect of NOx reduction from a compression 

ignition engine by reducing the iodine value of a biodiesel fuel by hydrogenating it, and 

thus changing the fuel properties by increasing the hydrogen content, reducing the double 

bonds of the fuel, and increasing its cetane number.  The current research presented here 

focuses on the emissions from an engine that had the EGR shut off and used a pilot and 

main injection strategy.  Engine tests were performed to compare this hydrogenated fuel 

with a soy-based biodiesel fuel.  Two blend concentrations were prepared: a 20% blend 

and a 40% blend.  The fuels were tested in 4 engine modes, and compared to an ultra low 

sulfur diesel fuel.  The 20% soy-based biodiesel showed increases in NOx emissions 

across the 4 engine modes.  The 40% soy-based biodiesel and both hydrogenated 

biodiesel blends showed NOx reductions for all 4 engine modes, and in all cases below 

the emissions levels for the ultra low sulfur diesel fuel.   
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 From the review of the theories for the NOx increase associated with biodiesel, 

the following can be said about the data: 

- If a higher adiabatic flame temperature indicates an increase in the NOx 

emissions as a result of the number of double bonds in the biodiesel fuel, 

then a decrease in those double bounds would lead to a decrease in the 

NOx emissions.  This data and the adiabatic flame temperature 

calculation support this conclusion. 

- Fuel injection pressure increased as the needle lifted higher to deliver the 

required fuel in the same timing.  This increase in pressure and its affect 

on the NOx emission is unknown. 

- It may also be possible that the chemistry of the fuel affects the physical 

properties of the fuel as it is delivered into the cylinder.  Specifically, 

that the higher density and lower volatility both produce a longer 

vaporization and a larger droplet spray field zone, thus causing higher 

NOx emissions.  However, the density of the B100 and H100 are similar, 

which does not explain the reduction in NOx result for the H20 and H40 

fuel blends.  The boiling range information for the neat fuels shows that 

the volatility of the biodiesel fuels are similar, and with higher volatility 

than the BP 15 diesel fuel.  Thus, the higher volatility and shorter 

vaporization would lead to lower NOx emissions.  Heat Release data 

showed similar vaporization, and yet lower NOx emissions with the H20 

fuel.  
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Based on the discussion regarding the theories for the biodiesel NOx effect, the 

results seen in the NOx emission data would have to be explained by the increase in 

adiabatic flame temperature for the soy-based biodiesel and the Prompt NOx effect as a 

result of the change in the biodiesel fuel properties between the soy-based biodiesel and 

the hydrogenated biodiesel.  
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Chapter 5 
 

NOx Reduction through Mixed Mode Combustion 

5.1 Preface 

This chapter presents new data that has not been previous published.  Initial 

research was performed by the author on a Navistar 7.3L heavy duty turbocharged diesel 

engine.  The data from the initial study is presented here.  Because the engine’s fuel 

injection system (Caterpillar’s HEUI fuel injectors- hydraulic electronic unit injectors) 

produced a multiple pulse (split-shot) injection at the low engine speed and load 

condition, it was unclear in the heat release data when the dimethyl ether (DME) ignition 

was occurring and when the diesel fuel ignition was occurring.  However, the emissions 

data from the initial study did suggest a NOx reduction benefit from the DME in a mixed 

mode combustion system.  A second study was then performed in an engine which had 

fuel injection control and where the impact of the fuel injection timing on the combustion 

process could be studied more easily during mixed mode combustion.  A Detroit Diesel 

Corporation (DDC) 2.5L light duty turbocharged diesel engine was used in this second 

study.  The engine intake air system was modified to incorporate an air heating system so 

that the impact of intake air heating on the low temperature heat release ignition could be 

probed.     
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5.2 Introduction 

Rising fuel prices and government regulated reductions of exhaust emissions 

continue to pressure engine and vehicle manufacturers to make improvements in 

efficiency and emissions.  Those improvements can be made through changing the fuel, 

modifying how energy is stored and used on a vehicle, and through improvements in the 

engine combustion process.   

This research plan addresses the issue of reducing emissions while maintaining or 

improving diesel-like fuel efficiency through a homogeneous fumigated fueling scheme 

in a turbo diesel engine.  In this work, the theoretical concepts of combustion efficiency 

and emissions of a homogeneous fumigated charge compression ignition process (HCCI) 

initiated by a pilot fuel injection, or what may be better described as a mixed mode 

combustion scheme, will be explored. 

Dimethyl ether (DME) is a gaseous material used commonly as a propellant in 

aerosol cans.  Also, it has been found to be an effective fuel for use in compression 

ignition engines due to its high cetane number and smokeless combustion [208].  DME is 

seen to be an important fuel for worldwide use due to its flexibility for use in home 

heating, engines, and stationary power, as well as its various potential feedstocks: coal, 

biomass and natural gas [209].  With the increase in the cost of a barrel of oil, the 

financial prospects for DME have improved sufficiently to make it a more viable fuel for 

US interests.  Researchers in other countries have been studying the use of DME in HCCI 

engines [210, 211]. However, the control of ignition timing and combustion duration over 

a wide range of engine speeds and loads remains a hindrance to the use of HCCI [211].  
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Therefore, understanding what may affect the ignition and combustion process in an 

HCCI engine and how it affects the process is a significant need in harnessing HCCI for 

practical use.   

The theme of this research was to explore if a mixed mode combustion system 

with DME as the gaseous fuel could reduce NOx emissions from a compression ignition 

engine.   A set of initial experiments with DME inducted into the intake of an engine and 

coupled with a diesel fuel pilot injection were performed.  These initial experiments 

showed that NOx emissions could be reduced with this “mixed-mode” combustion 

strategy.  Engine hardware did not allow for all aspects of the pilot fuel injection timing 

to be explored, and competing effects of multiple injections skewed some data.  The 

experiments did not completely address how low the NOx emission could go, or how to 

achieve minimal NOx emissions.  

The hypothesis being tested is that through the improvement of the ignition 

quality of a mixed mode DME/diesel pilot injection compression ignition engine, control 

of the homogeneous ignition process at the low speed and low load conditions will 

simultaneously yield lower NOx emissions and similar or improved efficiency.  Using the 

high ignition quality of DME via its low ignition temperature reactions, control of the 

homogeneous ignition process can be achieved by controlling the reaction rate of the fuel 

and air mixture.   

The reaction rate of the cylinder charge is a function of several variables 

including intake air temperature, heat addition through compression of the cylinder 

charge, heat addition through introduction of exhaust gases in the intake charge, cetane 

number of the pilot fuel injection, cetane number of fuel and gases in the intake air, and 
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the air/fuel ratio in the cylinder charge. The homogeneous charge fuel for these 

experiments will consist of DME and mixtures of DME with Methane to study the effect 

of changes in the cetane number of the cylinder charge.  The pilot fuel injections will 

consist of an ultra low sulfur diesel fuel.  An intake air heater will be used to vary the 

charge temperature as a way to model the impact of adjusting compressive heating and 

intake air heating effect on the autoignition of the charge. 

The research work that will be discussed included several aspects.   Those 

include:   

1. Design and test the fueling system on the Navistar 7.3L and the DDC 2.5L engines to 

introduce the homogeneous mixture into the engine intake port.  Show that the engine 

can be operated at a steady state condition.   

2. Perform a series of tests with the Navistar 7.3L to study the effects of varying the 

concentrations of DME and air in the intake charge.  Perform another set of tests with 

the DDC 2.5L engine to study the effect of varying timing of the pilot injection of the 

diesel fuel by varying 1) the cetane number of the intake charge with DME and 

blends of DME and Methane, and 2) the intake temperature of the charge.   

3. Explain the behavior of the system through various methods which include: 

o Use the AVL CEB (Combustion Emissions Bench) II to measure the 

emissions of the process and compare to normal mode operation.  With this 

equipment, changes in NOx, CO, CO2, Methane and hydrocarbon emissions 

will be measured.  Use a Nicolet FTIR spectrometer to collect exhaust to 

confirm the N2O emissions.  Use gas chromatography to collect information 

on the amount of DME and other C1-C6 carbon compounds found in the 
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exhaust gases.   Collect particulate matter emissions to confirm the magnitude 

of reduction from this mixed mode system. 

o Use the pressure trace analysis software to analyze the bulk fuel burning and 

heat release of the mixed mode process.  The data will provide information on 

the ignition quality of the fuel and the burning rate. 

5.3 DME and Mixed Mode Combustion Process 

The proposed research involves a direct injection diesel engine, operating through 

the use of DME (dimethyl ether) and Methane blends fumigated in the intake air and 

ignited through the use of the diesel fuel pilot injection.  Therefore, literature relevant to 

this subject would include any dual fuel concept using DME and diesel pilot injection, in 

addition to a combination of DME and other gases fumigated in the intake air.  DME fuel 

property information is shown in Table 5.1 [212].  DME has a high cetane number, 

making it an excellent compression ignition engine fuel [76, 83].   
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Hountalas and Papagiannakis developed a simulation model for a direct injection, 

dual fuel, diesel- natural gas engine [213].  Their data was compared to experimental data 

for diesel fuel only, and showed that the NOx emissions for any of the diesel-natural gas 

blends was higher than for diesel over the BMEP (brake mean effective pressure) range 

[213].  Also, the data showed that the PM emissions could be reduced below that for 

diesel only, with increasing natural gas blends over 30% for the entire BMEP range 

[213].   

Chen and coworkers performed experiments with DME and natural gas blends 

fumigated into a single cylinder Yanmar engine [214].  Through the significant 

combustion analysis performed, they showed the effect of increasing DME content in the 

blend on NOx, thermal efficiency and total hydrocarbons [214].  Their research did not 

focus on the effect on soot emissions [214]. The data was presented so that one could 

understand the relationship between the DME concentration, natural gas concentration 

and the various emissions [214].  Conditions with the highest BMEP and brake thermal 

Table 5.1:  Properties of dimethyl ether (DME) [212] 

Property  DME  
Chemical formula CH3OCH3  
Molecular weight 46  
Oxygen content—mass %  34.8  
Stoichiometric air fuel ratio–kg/kg 9.1  
Lower heating value–kJ/kg 28,800  
Liquid density–g/ml@15°C 0.668  
Boiling point–°C –24.9  
Viscosity–kg/m-s@25°C kg/m-s est. 0.12–0.15  
Vapor pressure@25°C–bar 5.1  
Critical pressure–atm 52  
Critical temperature–°C 127  
Ignition temperature–°C 235  
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efficiency were also the conditions with the highest total hydrocarbons and NOx 

emissions [214]. 

The HCCI combustion process has more premixed heat release than the typical 

diesel combustion process, sometimes with a two stage heat release depending on the fuel 

used [215]. Therefore, the injection timing, fuel vaporization, and ignition timing are 

critical to occur in sequence to produce maximum engine power output, usually at top 

dead center (TDC).  The ignition timing is specifically a function of the chain initiation 

and chain propagation reactions which begin the autoignition process, and are controlled 

through the heating of the fuel and air mixture.  To that end, the ignition timing is a 

function of the fuel blend and in-cylinder condtions.  When a gaseous fuel is used in the 

engine, the fuel vaporization process does not exist.  Additionally, the mixture 

preparation of the fuel and air mixture is an important quality affecting the homogeneity 

of the combustion.  Research has shown that HCCI can be effective to reduce emissions 

and improve efficiency within certain boundaries, broadly the ignition limit and the 

knocking limit of the fuel blend [214].  The goal of this research is to determine if the 

ignition quality of dimethyl ether (DME) or blends of DME fumigated into the engine, 

and then ignited by a diesel fuel pilot injection can produce the desired NOx emissions 

reduction.  Specifically, can the use of a diesel pilot injection of fuel to ignite a 

homogeneous mixture of DME and air and mixture of DME, Methane and air reduce 

NOx emissions and particulate matter, while minimizing the typical hydrocarbon and CO 

increase associated with HCCI combustion?  Researchers have used DME blends with 

other fuels to accelerate the low temperature reactions in the HCCI process, like propane 

and butane [216, 217].  Some experimental and modeling work with DME and Methane 
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or natural gas blends has also been performed [218, 219].  However, DME’s use with 

Methane and a pilot injection of diesel fuel has not been demonstrated before.   

The theoretical concepts of this research center around the low temperature 

reactions, the heat release rate, the ignition delay of the bulk fuel, and the NOx 

mechanisms.  Low temperature reactions are defined as reactions which occur below 600 

K [220].  Martinez-Frias and coworkers have shown that the fraction of heat release from 

these reactions can be affected by thermally conditioning the intake charge within a 40 K 

window of the charge temperature at the beginning of the compression stroke (the 

temperature at BDC)  [144].   These results were for an engine running at a specific 

compression ratio, speed, equivalence ratio, EGR and inlet pressure of air and fuel [144].  

Therefore, it is difficult to give an exact temperature range for a specific engine, because 

it is a function of the compression ratio of the engine and other heat contributions to the 

fuel and air mixture.  Heat release rate is defined as the amount of heat released by the 

chemically reacting system over time. Controlling the heat release rate is critical to 

managing the emissions and peak power output.  Ignition delay of the bulk fuel is defined 

as the amount of time that it takes for the fuel to begin combustion measured from the 

start of injection of the fuel.  Researchers define the start of injection as when the fuel 

first leaves the nozzle [221].  However, ignition delay means something different when 

talking about a gaseous fuel, especially when bringing it into the cylinder through the 

intake air system.  Since intake air temperature, turbocharging and compression all add to 

the energy involved in the ignition process, a new definition of ignition delay may need 

to evolve as a part of this research.  Some researchers suggest tracking the timing of mass 
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fraction burned 50% (MFB50) as a means to denote an endpoint to ignition [148, 222, 

223].  

NOx producing mechanisms include the Zeldovich (thermal) NO, Fenimore 

(prompt) NO, nitrous oxide (N2O) generated NO, and conversion of fuel nitrogen to NO 

[48].  Diesel combustion generates NOx mostly from the Zeldovich mechanism, and 

some from the Fenimore mechanism due to CH formed in the flame front.  However, NO 

is not typically generated due to fuel nitrogen conversion (as there is none) nor the 

nitrous oxide (N2O) pathway.  However, researchers are beginning to find that nitrous 

oxide (N2O) is being emitted from HCCI engines, suggesting that its abundance shows 

this pathway is being used to create NO at the lower temperatures [224]. 

5.4 Design and Testing of the DME Gaseous Fueling System 

 The first part of the research involved demonstrating that a reduction in NOx 

emissions could be produced through the induction of DME into the engine.  This phase 

included developing the fuel system to handle DME induction.  Hardware was added to 

the engine intake air system and upstream from the engine intake to provide mixing 

length for the fuel and air prior to entry into the cylinder via the intake air port.  The 

DME fuel was dispersed and mixed with the boosted air using a custom built mixing 

manifold.  A picture of the fuel aspiration manifold is shown in Figure 5.1. The manifold 

consisted of four Enerac Hastelloy filters placed on the radial of the manifold. 
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 The DME tank was fitted with tank heaters as shown in Figure 5.2, and pressure 

and temperature monitoring were added to the DME tank to maintain a constant pressure 

and temperature of the fuel delivery, as shown in Figure 5.3.   

 

 
Figure 5.1: Custom intake air manifold aspiration system 
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Figure 5.2: DME fuel tank with heaters 
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Also, this stage included determining how much energy and therefore how much 

fuel would be required for a specific speed and load (mode) condition based on the mass 

air flow for that mode running on diesel.  The Navistar 7.3L engine was set up to 

continue to inject the small pilot amount of diesel fuel that would be needed for idling the 

engine.  The approach was to bring in a mixture of fuel and air on the intake stroke, 

metering the fuel with a Matheson flow meter.  Depending on the flow rate required for 

the particular test, a different Matheson flow tube number was used.  This mixture was 

compressed and would not ignite as it would in a typical HCCI combustion process.  The 

only additional in-cylinder event occurring was the additional diesel fuel pilot and the 

associated diffusion burning.  To prevent purely homogeneous ignition of the intake 

charge, the fuel and air mixtures in the intake charge were to be leaner than normal HCCI 

 

Figure 5.3: DME tank pressure and temperature monitoring system 
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mixtures. The combustion events were measured using a pressure transducer, and the heat 

release was determined through the use of a simple heat release equation assuming a 

constant gamma of 1.37 [11].  For further simplification, heat losses through the cylinder 

wall were ignored.   Monitoring the combustion events via the pressure trace indicated 

when the knocking limit was reached at a particular speed and load condition.  

5.5 Test Results from a Navistar 7.3L Heavy Duty Turbocharged Diesel Engine 

A series of tests were conducted on a Navistar 7.3L turbocharged direct injection 

diesel engine with a modified fueling system permitting a homogeneous charge of DME 

fuel to be inducted into the intake air system.  The fuel was introduced into the intake air 

system after the charge air cooler, but several feet prior to entering the intake air manifold 

to allow for mixing of the fuel and air.  The test matrix comprised 2 speed and 4 load 

conditions comparing a normally operating diesel engine fueled by Ultra Low Sulfur 

Diesel (ULSD) (15ppm sulfur) with a mixed mode combustion engine operating with the 

same ULSD fuel and the inducted DME, as described in Table 5.2.  Also, a series of tests 

were conducted at a set speed and load condition with varying concentrations of DME, as 

described below in Table 5.2.  These speed and load conditions were picked because they 

represent the range between 2 and 3.5 bar IMEP (Indicated Mean Effective Pressure) 

where researchers have had the most success in achieving HCCI combustion [145].  

IMEP is defined as the net work generated in the combustion chamber [225].  The DME 

was increased to a point where the amount of energy input would be equal to the amount 

of energy supplied by the directly injected diesel fuel. 
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Since the goal of this research is to reduce NOx emissions and to improve fuel 

efficiency, gaseous emissions data and combustion pressure traces were collected.  

Figure 5.4 shows that through the induction of DME in the intake, NOx emissions were 

reduced for both speed conditions versus the baseline, and were reduced as the load was 

increased in each speed condition.  On further inspection, there was a significant decrease 

in the NO emission, shown in Figure 5.6 , while the NO2 emissions increased, as seen in 

Table 5.2:  Description of Initial Engine Test Plan (ULSD= Ultra Low Sulfur Diesel; 
DME= Dimethyl Ether) 

 
 
Engine 
Speed  
(rpm)  

Engine Load 
(ft-lb) 

Engine Combustion 
Mode 

Fuel Type  DME 
Content 
(Flow meter 
scale) 

DME 
Content      
(gm/s) 

876 84 Diesel ULSD 0  
876 100 Diesel ULSD 0  
876 125 Diesel ULSD 0  
876 150 Diesel ULSD 0  
876 84 Mixed Mode ULSD & DME 50mm .7691 
876 100 Mixed Mode ULSD & DME 50mm .7691 
876 125 Mixed Mode ULSD & DME 50mm .7691 
876 150 Mixed Mode ULSD & DME 50mm .7691 
1000 84 Diesel ULSD 0  
1000 100 Diesel ULSD 0  
1000 125 Diesel ULSD 0  
1000 150 Diesel ULSD 0  
1000 84 Mixed Mode ULSD & DME 50mm .7691 
1000 100 Mixed Mode ULSD & DME 50mm .7691 
1000 125 Mixed Mode ULSD & DME 50mm .7691 
1000 150 Mixed Mode ULSD & DME 50mm .7691 
876 84 Mixed Mode ULSD & DME 60mm .9456 
876 84 Mixed Mode ULSD & DME 70mm 1.1301 
876 84 Mixed Mode ULSD & DME 80mm 1.3228 
1000 150 Mixed Mode ULSD & DME 70mm 1.1301 
1000 150 Mixed Mode ULSD & DME 80mm 1.3228 
1000 150 Mixed Mode ULSD & DME 90mm 1.5237 
 ULSD- Ultra Low Sulfur Diesel (15ppm) 
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Figure 5.5 .  Although not shown in this report, there was a significant increase in both 

CO and HC (hydrocarbon) emissions. 
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Figure 5.4:  NOx emissions in gram NOx per kg fuel (Test Condition = Speed (rpm)/Load 
(ft-lbs)) ; Baseline is ULSD diesel fuel. 
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Figure 5.7 is a graph of the brake specific energy consumption.  As can be seen, 

the engine was operating at a higher fuel/energy consumption rate (BSEC) over most test 

conditions.  Although the goal of the test was to keep the speed, load and fuel energy 

content the same, this was not possible due to the engine control module (ECM).  It 

seems that as the DME content was increased into the engine, the ECM began to dial 

back on the amount of diesel fuel injected as well as to adjust the fuel injection timing 

and injection pressure, possibly as a function of the fueling map of the engine.  This is 

shown in Table 5.3 for the tests composed of holding speed and load constant and 

varying the DME concentration in the intake air.  However, for all speed and load 

conditions, constant speed and load were maintained throughout the test. 
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Figure 5.6:  NO2 emissions (gram NO2 /hour) (Test Condition = Speed (rpm)/Load (ft-
lbs)) ; Baseline is ULSD diesel fuel. 
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 The following figures, Figure 5.8 and Figure 5.9 , show a comparison in the heat 

release for two speed and load conditions, specifically 876 rpm and 84ft-lb torque, and 

1000 rpm and 150 ft-lb torque.  A baseline diesel heat release curve is plotted to contrast 

the change in the heat release curves as the DME concentration being inducted is 

increased.  As can be seen in both cases, heat release rate decreases during the 

combustion process, with increasing heat loss in the chamber to the cylinder gases either 

before the main heat release or between the primary and secondary heat release.  Some 

heat release curves show the typical two stage heat release as shown in some HCCI 

studies [220].   The negative temperature regime is to be expected between the cool flame 

and hot flame heat release [140].  However, in this engine configuration, there are two 

pulses of fuel delivered at 876 rpm. After studying the fuel injection timing, the likely 

cause of the significant negative heat release is the diesel fuel vaporization. 

Table 5.3:  Breakdown of fueling and injection conditions (Negative Dynamic Injection 
Timing indicates before TDC) 

 

Speed 
(rpm) 

Torque 
(ft-lbs) 

Fuel- 
Diesel 
(g/s) 

Fuel- 
Diesel 
(g/rev) 

DME 
Flow 
(g/s) 

DME 
Flow 
(g/rev) 

Total 
Fuel 
Flow 
(g/s) 

Vol Fuel 
Desired 
(Diesel) 

Dynamic 
Injection 
Timing 
(Diesel) 

Injection 
Control 
Pressure 
(Diesel) 

873.8 84.380 0.7532 0.0517 0.0000 0.0000 0.7815 15.5500 -7.6461 3.5004 

873.3 83.909 0.4739 0.0326 0.7691 0.0528 1.2434 9.9750 -7.6727 3.5066 

873.8 84.041 0.6253 0.0429 0.9456 0.0649 1.5777 13.4750 -7.6539 3.4953 

874.2 84.106 0.2967 0.0204 1.1301 0.0776 1.4466 7.5875 -7.6703 3.4979 

873.45 84.139 0.2244 0.0154 1.3228 0.0909 1.5603 7.3750 -7.6594 3.5041 

     
     

998.55 150.181 1.2954 0.0778 0.0000 0.0000 1.3439 25.2563 -8.3031 5.4516 

998.75 150.150 1.1249 0.0676 0.7691 0.0462 1.8949 20.2938 -9.0023 4.2367 

1011.45 150.899 0.8689 0.0515 1.1301 0.0670 1.9987 16.3875 -9.6109 3.7400 

1010.85 150.890 0.7516 0.0446 1.3228 0.0785 2.0748 15.6656 -9.5656 3.6326 

1011.25 150.965 0.7511 0.0446 1.5237 0.0904 2.2740 15.5719 -9.5625 3.6303 
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Figure 5.8:  Heat Release data for 876 rpm and 84 ft-lb torque with increasing DME 
concentration in comparison to the baseline diesel operation. 
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 The graphs suggest to further inspect the combustion flame temperatures and 

pressure traces for each test condition from the current data set, and to continue with 

further testing to separate the fuel pulse vs. the DME fueling.  Chemkin analysis can aid 

in the explanation of the heat release rate, kinetics of the process, and change in NOx 

emissions production. Specifically, it is important to know how the mixed mode process 

is changing the NOx pathway, and if N2O is produced or acting as an intermediate.  
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Figure 5.9:  Heat Release data for 1000 rpm and 150 ft-lb torque with increasing DME 
concentration in comparison to the baseline diesel operation 
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5.6 DDC 2.5L Light Duty Turbocharged Diesel Engine Tests 

This research involves a second set of tests to explore the ignition quality of DME 

in an engine that will allow for control of injection pulse and timing control.   The engine 

used for these experiments is a Detroit Diesel Corporation 2.5L light duty turbocharged 

diesel engine.  The diesel fuel used is a British Petroleum 15 ppm sulfur ultra low sulfur 

diesel fuel, listed as BP15 on the figures for the results. When the DME is introduced, it 

represents the % energy equivalent substitution for the diesel fuel in combination with the 

rest of the fuel being BP15.  For example, BP15 25% DME represents BP15 with 25% 

energy equivalent DME.  The following section gives an overview of the experiments 

involved in this research.   

The second set of experiments involve setting the engine into a single pulse 

injection mode and spanning DME concentrations to study the effect of the DME on the 

gaseous and particulate matter emissions for a particular speed and load condition.   

For the third set of experiments, thermal conditioning of the intake charge is 

altered.  An intake air heater is installed in the intake air system of the DDC 2.5L engine.  

The goal of using intake air heating is to observe the effect of this change on the ignition 

timing and combustion of the charge.  Gasesous and particulate matter emissions are 

collected.   

A fourth set of experiments involve modifying the ignition quality of the system 

by adjusting the cetane number to further reduce NOx emissions and improve efficiency.  

The fuel brought into the intake is a combination of DME and Methane.  Again, there is a 

pilot injection of diesel fuel.   Gasesous and particulate matter emissions are collected.   
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5.7 Description of Experimental Set-up 

The engine tests were performed in a DDC 2.5L engine with a modified intake air 

system which was designed to allow for intake air heating.  The intake air heating will be 

used to study the ignition behavior of the fuel.  Also, the intake air system was modified 

to host a series of ports for the gaseous fuel blends to be input into the system.  

Figure 5.10 shows the layout of the intake air heaters before installation of the DDC 2.5L 

engine.  The two Sylvania 20 Watt air heaters were located in parallel with the intake air 

flow.   

The standard fuel injection strategy is comprised of a pre-injection followed by a 

main injection to reduce emissions and engine noise.  For these tests, the engine was 

 

Figure 5.10: Layout of intake air heating system before installation on the DDC 2.5L 
engine stand 
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commanded to provide a single pulse injection mode.  The experimental tests were 

performed at:  1800 rpm, 61 ft-lbs torque, and a start of fuel injection timing of 7° BTDC.    

5.8 Results from a DDC 2.5L Turbo Diesel Engine 

 The following sections are the results for the three sets of experiments described 

previously.  Each experiment will be described with the gaseous and particulate matter 

emissions following.   

5.8.1 Increasing Dimethyl Ether Concentrations in Intake Air 

The second set of experiments involved setting the engine into a single pulse 

injection mode and spanning DME concentrations to study the effect of the DME on the 

NOx emissions for a particular speed and load condition.  The concentrations of DME are 

represented as the percent energy equivalent substitution by DME that replaced the diesel 

fuel energy, based on the calorific value of the fuels.  Gasesous and particulate matter 

emissions were collected.   

 Figure 5.11 shows the NOx (g/kg fuel) for mixed mode combustion at 1800 rpm 

and 61 ft-lb torque with increasing DME concentration fumigated in the intake air.   NOx 

emissions decrease slightly per gram of fuel, approximately 10%, but there is no decrease 

observed with increasing DME fumigated fuel.    
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 Figure 5.12 shows NOx (g/kWh) for mixed mode combustion at 1800 rpm and 61 

ft-lb torque with increasing DME concentration fumigated in the intake air.  On the basis 

of power, a greater impact in NOx emissions reduction is observed than for the 

conventional diesel BP15.   
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Figure 5.11: NOx (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with increasing DME concentration fumigated in the intake air 
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 Figure 5.13 shows the NO (g/kg fuel) for mixed mode combustion at 1800 rpm 

and 61 ft-lb torque with increasing DME concentration fumigated in the intake air.  As is 

seen in the figure, for a DME concentration of 15% energy equivalent, an almost 50% 

percent reduction in NO emissions is observed.  As the DME % is increased, the NO 

emissions begin to increase.  
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Figure 5.12:  NOx (g/kWh) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with increasing DME concentration fumigated in the intake air 
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 Figure 5.14 shows the NO2 (g/kg fuel) for mixed mode combustion at 1800 rpm 

and 61 ft-lb torque with increasing DME concentration fumigated in the intake air.  As is 

seen in the figure, for a DME concentration of 15% energy equivalent, an almost 50% 

percent increase in NO2 emissions is observed.  As the DME % is increased, the NO2 

emissions begin to decrease.  
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Figure 5.13:  NO (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with increasing DME concentration fumigated in the intake air 
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 The Nicolet Magma 500 FTIR was used to collect N2O data for the 15% DME 

and 20% DME Mixed Mode Combustion data points.  No N2O was observed with these 

two concentrations, so the collection of this data was discontinued.   

 Figure 5.15 shows the Brake Specific Fuel Consumption (BSFC) (g/kWh) for 

mixed mode combustion at 1800 rpm and 61 ft-lb torque with increasing DME 

concentration fumigated in the intake air.   Approximately the same amount of fuel mass 

was required to maintain the engine speed and load.   
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Figure 5.14:  NO2 (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with increasing DME concentration fumigated in the intake air 
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 Figure 5.16 shows the Brake Specific Energy Consumption (BSEC) (MJ/kWh) 

for mixed mode combustion at 1800 rpm and 61 ft-lb torque with increasing DME 

concentration fumigated in the intake air.  On an energy basis, as the percent of DME 

energy was increased, less energy was required to produce the same amount of power.  

At the 44% DME energy equivalent, 22.8% less energy was required to maintain the 

same power output from the engine. 
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Figure 5.15: Brake Specific Fuel Consumption (g/kWh) for mixed mode combustion at 
1800 rpm and 61 ft-lb torque with increasing DME concentration fumigated in the intake 
air 
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 Figure 5.17 shows the CO (g/kg fuel) for mixed mode combustion at 1800 rpm 

and 61 ft-lb torque with increasing DME concentration fumigated in the intake air.  As is 

seen in the figure, with any blend concentration of DME, CO increases over the normal 

diesel fuel.  The maximum CO is measured at 25% DME concentration, with CO 

decreasing from there whether the blend concentration is increased or decreased.   
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Figure 5.16:  Brake Specific Energy Consumption (MJ/kWh) for mixed mode combustion 
at 1800 rpm and 61 ft-lb torque  with increasing DME concentration fumigated in the
intake air 
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 Figure 5.18 shows the Total Hydrocarbons (g/kg fuel) for mixed mode 

combustion at 1800 rpm and 61 ft-lb torque with increasing DME concentration 

fumigated in the intake air.  The hydrocarbons increase with increasing percent DME 

concentration.   
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Figure 5.17:  CO (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with increasing DME concentration fumigated in the intake air 
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 Figure 5.19 shows the data from the GC that was collected on the FID.  The gases 

that were calibrated on the GC are shown and quantified.  As can be seen, with increasing 

DME concentration, the amount of DME found in the exhaust gases increase.  Also, the 

Methane concentration is seen to increase.  THC is the total hydrocarbons of all those 

measured from the GC found in the exhaust gas.  While not easily shown in this figure, 

but observed in the data is that the small concentrations of light hydrocarbons other than 

Methane and DME decrease to zero when using the fumigated DME.  
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Figure 5.18:  Total Hydrocarbons (g/kg fuel) for mixed mode combustion at 1800 rpm 
and 61 ft-lb torque  with increasing DME concentration fumigated in the intake air 
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 Figure 5.20 shows the CO2 (g/kg fuel) for mixed mode combustion at 1800 rpm 

and 61 ft-lb torque with increasing DME concentration fumigated in the intake air.  An 

approximately 5% reduction of CO2 is observed for some DME blend concentrations, but 

the trend is not consistent.   
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Figure 5.19: GC Data:  BP15 in comparison to mixed mode combustion with increasing 
energy equivalent percent DME concentration at 7° BTDC 
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 Figure 5.21 shows Methane (ppm) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with increasing DME concentration fumigated in the intake air.  Methane 

is a maximum at the 25% DME concentration.    
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Figure 5.20:  CO2 (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with increasing DME concentration fumigated in the intake air 
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 Figure 5.22 shows Exhaust Temperatures (°C) for mixed mode combustion at 

1800 rpm and 61 ft-lb torque with increasing DME concentration fumigated in the intake 

air.  The exhaust temperature is the same for each test condition. 
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Figure 5.21:  Methane (ppm) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with increasing DME concentration fumigated in the intake air 
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 Figure 5.23 shows Cylinder Pressure trace data for BP15 in comparison to mixed 

mode combustion with increasing energy equivalent percent DME concentration at 7° 

BTDC.  The BP15 diesel pressure trace shows the distinction between the premixed and 

the diffusion burn parts of the process.  As the DME concentration is increased, the start 

of combustion comes earlier and with it is premixed burning.  The premixed phase and 

the diffusion phase merge.  In addition, the pressure increases with increasing DME 

concentration.   
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Figure 5.22:  Exhaust Temperatures (°C) for mixed mode combustion at 1800 rpm and 61
ft-lb torque  with increasing DME concentration fumigated in the intake air 
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 Figure 5.24 shows heat release rate (J/deg) for BP15 in comparison to mixed 

mode combustion with increasing energy equivalent percent DME concentration at 7° 

BTDC.  DME exhibits a two peak heat release, the first a low temperature heat release 

(LTHR) and the second a high temperature heat release (HTHR).  With increasing DME 

concentration, the LTHR peak increases and maintains the same combustion phasing.  
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Figure 5.23: Cylinder Pressure Traces (bar) for BP15 in comparison to mixed mode
combustion with increasing energy equivalent percent DME concentration at 7° BTDC 
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However, as the DME concentration is increased, the HTHR peak increases and advances 

closer to the LTHR peak.  In addition, the heat release from the diesel fuel is decreased 

with increasing DME concentration and maintains the same combustion phasing.   
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Figure 5.24:  Heat Release Rate (J/deg) for BP15 in comparison to mixed mode 
combustion with increasing energy equivalent percent DME concentration at 7° BTDC 
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 Figure 5.25 shows bulk cylinder temperature (K) for BP15 in comparison to 

mixed mode combustion with increasing energy equivalent percent DME concentration at 

7° BTDC.  With increasing DME concentration, the bulk temperature occurs earlier and 

an overall increase in bulk temperature occurs.   
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Figure 5.25: Bulk Cylinder Temperature (K) for BP15 in comparison to mixed mode
combustion with increasing energy equivalent percent DME concentration at 7° BTDC 
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 The following figures show the results of fixing DME concentration at 25% 

energy equivalent while changing in injection timing.  All results are shown in 

comparison to diesel fuel (BP15) at 7° BTDC.   

 Figure 5.26 shows NOx (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake 

air at various injection timing.  As the injection timing is retarded, the NOx emissions 

decrease.  The decrease in the NOx emissions as the injection timing is retarded would be 

expected since there would be less time for the production of thermal NO until the 

exhaust valve opens and quenches the reactions.  
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Figure 5.26:  NOx (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb 
torque with 25% energy equivalent DME concentration fumigated in the intake air at
various injection timings 

699



188 

 

 Figure 5.27 shows NOx (g/kWh) for mixed mode combustion at 1800 rpm and 61 

ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake air at 

various injection timings.  As the injection timing is retarded, the NOx emissions 

decrease.   For the same power output, NOx emissions were reduced by almost 50% by 

injection of the diesel fuel at 1° BTDC.   

 Figure 5.28 shows NO (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake 

air at various injection timings.  As the injection timing is retarded, the NO emissions 
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Figure 5.27:  NOx (g/kWh) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% energy equivalent DME concentration fumigated in the intake air at various
injection timings 
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decrease.   For the same power output, NO emissions were reduced by over 80% by 

injection of the diesel fuel at 1° BTDC.   

 

 Figure 5.29 shows NO2 (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake 

air at various injection timings.  While NO2 emissions increase with DME concentration, 

they decrease as the injection timing is retarded.   
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Figure 5.28:  NO (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% energy equivalent DME concentration fumigated in the intake air at various
injection timings 
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 Figure 5.30 shows Methane (ppm) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake 

air at various injection timings.  Methane emissions increase when injection timing is 

retarded.   
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Figure 5.29:  NO2 (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% energy equivalent DME concentration fumigated in the intake air at various
injection timings 
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 Figure 5.31 shows GC data for 25% energy equivalent DME concentration at 

varying pilot injection timing:  7°, 5°, 3° BTDC.  As the injection timing is retarded and 

injection begins later, the Methane concentration in the exhaust increases, while the DME 

concentration stays roughly the same.   
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Figure 5.30:  Methane (ppm) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% energy equivalent DME concentration fumigated in the intake air at various
injection timings 
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 Figure 5.32 shows Brake Specific Fuel Consumption (g/kWh) for mixed mode 

combustion at 1800 rpm and 61 ft-lb torque with 25% energy equivalent DME 

concentration fumigated in the intake air at various injection timings.  Besides a slight 

decrease in fuel consumption when using DME, there is no apparent change in fuel 

consumption with change in injection timing.   
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Figure 5.31:  GC Data:  25% energy equivalent DME concentration at varying pilot 
injection timings:  7°, 5°, 3° BTDC 
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 Figure 5.33 shows Brake Specific Energy Consumption (MJ/kWh) for mixed 

mode combustion at 1800 rpm and 61 ft-lb torque with 25% energy equivalent DME 

concentration fumigated in the intake air at various injection timings.  Besides a 15% 

decrease in energy consumption when using DME, there is no apparent change in fuel 

consumption with change in injection timing.   
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Figure 5.32:  Brake Specific Fuel Consumption (g/kWh) for mixed mode combustion at
1800 rpm and 61 ft-lb torque  with 25% energy equivalent DME concentration fumigated 
in the intake air at various injection timings 
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 Figure 5.34 shows Fuel Consumption (g/hr) for mixed mode combustion at 1800 

rpm and 61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the 

intake air at various injection timings.  At 5° BTDC, a minimum fuel consumption is 

observed, about a 5% decrease when DME is fumigated.  As the injection timing 

retarded, the fuel consumption increases back to the same level as diesel fuel.  
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Figure 5.33:  Brake Specific Energy Consumption (MJ/kWh) for mixed mode combustion
at 1800 rpm and 61 ft-lb torque with 25% energy equivalent DME concentration 
fumigated in the intake air at various injection timings 
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 Figure 5.35 shows Cylinder Pressure (bar) for mixed mode combustion at 1800 

rpm and 61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the 

intake air at various injection timings.  As the timing is retarded, the crank angle degree 

of peak pressure shifts while the magnitude of peak pressure remains the same.   
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Figure 5.34:  Fuel Consumption (g/hr) for mixed mode combustion at 1800 rpm and 61
ft-lb torque  with 25% energy equivalent DME concentration fumigated in the intake air 
at various injection timings 
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 Figure 5.36 shows heat release rate (J/deg) for mixed mode combustion at 1800 

rpm and 61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the 

intake air at various injection timings.  As the timing is retarded, the crank angle degree 

phasing of LTHR and HTHR remains the same despite the diesel pilot injection.  Thus, 
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Figure 5.35:  Cylinder Pressure (bar) for mixed mode combustion at 1800 rpm and 61 ft-
lb torque  with 25% energy equivalent DME concentration fumigated in the intake air at
various injection timings 
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the DME portion is independent of the diesel portion.  The timing of the diesel fuel heat 

release adjusts with the change in injection timing.  Also, as the timing is retarded, it 

appears that the heat release from the diesel fuel portion increases.  
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Figure 5.36:  Heat Release Rate (J/deg) for mixed mode combustion at 1800 rpm and 61
ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake air at
various injection timings 
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 Figure 5.37 shows bulk cylinder temperature (K) for mixed mode combustion at 

1800 rpm and 61 ft-lb torque with 25% energy equivalent DME concentration fumigated 

in the intake air at various injection timings.  As the timing is retarded, the bulk 

temperature as a result of the LTHR and HTHR peak appears to be same.  There is a 

delay and a reduction in the high temperature peak as a result of the retarding of the 

injection timing and the diesel fuel impact on the combustion process.   
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Figure 5.37:  Bulk Cylinder Temperature (K) for mixed mode combustion at 1800 rpm
and 61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the
intake air at various injection timings 
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5.8.1.1 Sierra Instruments BG-2 Gravimetric Particulate Matter Data 

 Exploratory observations were made with the BG-2 on the particulate matter 

(PM) change associated with the mixed mode combustion process.  The following 

photographs show an observed change in the darkness of the filters.  Darkness of the 

filter is related to particulate mass concentration.  Again, the engine speed was 1800 rpm 

and the load was 61 ft-lbs torque for all data collected in these pictures.   

 An overview of the PM emissions for BP-15 is shown in Figure 5.38 with 

changing injection timing.  The earlier that the fuel injection occurred, the darker the PM 

was on the filter. 

 Figure 5.39 shows BP-15 with 25% energy equivalent DME: 1°, 3°, 7° BTDC 

(left to right).  Based on the darkness only, it appears that the particulate matter mass is 

the same as the injection timing is advanced. 

 

Figure 5.38: BP-15 1800 rpm 61 ft-lbs: 3°, 5° ,7°,9° BTDC (left to right) 
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 Figure 5.40 shows BP-15 with 40% energy equivalent DME: 2°, 3°, 5°, 7° BTDC 

(left to right).  Based on the darkness only, it appears that the particulate matter mass is 

the same as the injection timing is advanced.  Also, comparing the 25% energy equivalent 

and the 40% energy equivalent, it appears that the particulate matter is the same 

regardless of DME energy equivalent.  

 

 

 
Figure 5.39: BP-15 with 25% energy equivalent DME: 1°, 3°, 7° BTDC (left to right) 
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 Figure 5.41 shows BP-15 with 40% energy equivalent DME: 7° BTDC (left) and 

BP-15 with 50% energy equivalent DME: 7° BTDC (right).  Based on the darkness only, 

it appears that the particulate matter mass is decreasing in darkness as DME energy 

equivalent is increased from 40% to 50 % for the fixed injection timing.  As is seen in the 

50% energy equivalent DME: 7° BTDC (right), the filter appears to be somewhat gray, 

which indicates less mass on the filter.   

 

 

 
Figure 5.40:  BP-15 with 40% energy equivalent DME: 2°, 3°, 5°, 7° BTDC (left to right)
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  Figure 5.42 shows BP-15 1800 rpm 61 ft-lbs: 3° BTDC (top left), 7° BTDC 

(bottom left) and BP-15 with 25% energy equivalent DME : 3° BTDC (top right), 7° 

BTDC (bottom right).  Based on the darkness only, it appears that the particulate matter 

for both BP-15 with 25% energy equivalent DME : 3° BTDC (top right), 7° BTDC 

(bottom right) are similar in mass, yet with retarded injection timing the filter is not as 

dark.  In comparison, the BP-15 1800 rpm 61 ft-lbs: 3° BTDC (top left), 7° BTDC 

(bottom left) shows dramatic changes in darkness depending on the injection timing with 

the change in darkness indicating more particulate matter mass as the injection timing is 

retarded.   

 

 

 
Figure 5.41:  BP-15 with 40% energy equivalent DME: 7° BTDC (left) 

BP-15 with 50% energy equivalent DME: 7° BTDC (right) 
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5.8.1.2 Tapered Element Oscillating Microbalance (TEOM) and Scanning Mobility 
Particle Sizer (SMPS) Data 

The following section presents data taken from the TEOM and the SMPS.  

Figure 5.43 shows TEOM data for mixed mode combustion at 1800 rpm and 61 ft-lb 

torque with increasing DME concentration fumigated in the intake air.  As is seen in the 

figure, the mass of PM increases with increasing DME concentration. 

 

 
Figure 5.42:  BP-15 1800 rpm 61 ft-lbs torque: 3° BTDC (top left), 7° BTDC (bottom 
left); BP-15 with 25% energy equivalent DME : 3° BTDC (top right), 7° BTDC (bottom 
right) 
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 Figure 5.44 shows TEOM data for mixed mode combustion at 1800 rpm and 61 

ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake air at 

various fuel injection timings.  As is shown in the figure, the maximum PM emissions 

appears at 5°BTDC, and declines with advanced and retarded injection timing from this 

point.  BP15 gave the lowest PM per power output from the engine.  
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Figure 5.43:  TEOM data for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with increasing DME concentration fumigated in the intake air 
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 Figure 5.45 shows SMPS data for BP-15 at 1800 rpm and 61 ft-lbs, comparing the 

particle size distribution with the Thermal Denuder at 40°C and 350°C.  As the 

temperature is increased, the hydrocarbons are volatilized from the soot.  Therefore, a 

shift in the distribution curve is observed which reflects that roughly 1/3 of the particles 

have been removed by the thermal denuder.  The distributions are monomodal.   
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Figure 5.44:  TEOM data for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% energy equivalent DME concentration fumigated in the intake air at various
fuel injection timings 
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 Figure 5.46 shows SMPS data for BP-15 at 1800 rpm and 61 ft-lbs compared with 

the particle size distribution with the Thermal Denuder at 40°C and 350°C and for BP-15 

with 25% energy equivalent DME addition at 1800 rpm and 61 ft-lbs compared with the 

particle size distribution with the Thermal Denuder at 40°C and 350°C.  Both fuels and 

thermal denuder conditions show a monomodal distribution.  This figure shows a 

reduction of solid and condensed particle concentrations and a shift toward larger 

remaining particles for DME.  Also, the curves that were collected for the fumigated 

DME did not completely finish at the zero axis, indicating that more particles at the 

higher size range exist.   
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Figure 5.45: SMPS Data:  BP-15 1800vrpm 61 ft-lbs comparing with the Thermal 
Denuder at 40°C and 350°C 
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 Figure 5.47 shows SMPS data for BP-15 with 25% energy equivalent DME at 

1800 rpm and 61 ft-lbs compared with the Thermal Denuder at 40°C and 350°C at 7° 

BTDC and data for BP-15 with 25% energy equivalent DME at 1800 rpm and 61 ft-lbs 

compared with the Thermal Denuder at 40°C and 350°C at 3° BTDC.  As the injection 

timing is retarded, a 25% increase of the solid and condensed particle concentrations is 

observed.   
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Figure 5.46:  SMPS Data:  BP-15 1800 rpm 61 ft-lbs comparing with the Thermal 
Denuder at 40°C and 350°C and SMPS Data:  BP-15 with 25% energy equivalent DME 
1800vrpm 61 ft-lbs comparing with the Thermal Denuder at 40°C and 350°C 
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Figure 5.47:  SMPS Data:  BP-15 with 25% energy equivalent DME 1800 rpm 61 ft-lbs 
comparing with the Thermal Denuder at 40°C and 350°C at 7° BTDC and SMPS Data: 
BP-15 with 25% energy equivalent DME 1800 rpm 61 ft-lbs comparing with the Thermal 
Denuder at 40°C and 350°C at 3° BTDC 
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5.8.2 Impact of Intake Air Heating  

For the third set of experiments, thermal conditioning of the intake charge was 

altered.  An intake air heater was installed in the intake air system of the DDC 2.5L 

engine.  The goal of using intake air heating was to observe the effect of this change on 

the ignition timing and combustion of the charge.  Gasesous and particulate matter 

emissions were collected.   

 Figure 5.48 shows NOx (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake 

air at various intake air temperatures compared to BP15, all at 3° BTDC fuel injection 

timing.  As the intake air temperature increases, the amount of NOx emissions increases 

for the 25% DME mixed mode combustion.  However, at the highest temperature, 80°C, 

for the 25% DME mixed mode combustion, the amount of NOx emissions is over 10% 

less than that with BP15 diesel fuel for 70°C.  
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 Figure 5.49 shows NOx (g/kWh) for Mixed mode combustion at 1800 rpm and 61 

ft-lb Torque with 25% energy equivalent DME concentration fumigated in the intake air 

at various intake air temperatures compared to BP15, all at 3° BTDC fuel injection 

timing.  On a power basis, as the intake air temperature increases, the amount of NOx 

emissions increase for the 25% DME Mixed mode combustion.  However, at the highest 

temperature, the amount of NOx emissions is almost 20% less than that with BP15 diesel 

fuel. 
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Figure 5.48:  NOx (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb 
torque  with 25% energy equivalent DME concentration fumigated in the intake air at
various intake air temperatures compared to BP15, all at 3° BTDC fuel injection timing 
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 Figure 5.50 shows NO (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake 

air at various intake air temperatures compared to BP15, all at 3° BTDC fuel injection 

timing.  As the intake air temperature increases, the amount of NO emissions increase for 

the 25% DME Mixed mode combustion.  However, at the highest temperature, the 

amount of NO emissions is 50% less than that with BP15 diesel fuel.  At the intake air 

temperature of 70 °C, the amount of NO emissions has been reduced by more than 50% 

with the 25% DME energy equivalent Mixed mode combustion over the BP15 diesel 

fuel.  
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Figure 5.49: NOx (g/kWh) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% energy equivalent DME concentration fumigated in the intake air at various
intake air temperatures compared to BP15, all at 3° BTDC fuel injection timing 
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 Figure 5.51 shows NO2 (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake 

air at various intake air temperatures compared to BP15, all at 3° BTDC fuel injection 

timing.  As the intake air temperature increases, the amount of NO2 emissions increase 

for the 25% DME Mixed mode combustion.  However, at the highest temperature, the 

amount of NO2 emissions is 4 times more than with BP15 diesel fuel. 
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Figure 5.50: NO (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% energy equivalent DME concentration fumigated in the intake air at various
intake air temperatures compared to BP15, all at 3° BTDC fuel injection timing 
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 Figure 5.52 shows Brake Specific Fuel Consumption (BSFC) (g/kWh) for mixed 

mode combustion at 1800 rpm and 61 ft-lb torque with 25% energy equivalent DME 

concentration fumigated in the intake air at various intake air temperatures compared to 

BP15, all at 3° BTDC fuel injection timing.  At the same power, the grams of fuel 

required was less for the 25% DME mixed mode combustion than with BP15 diesel fuel 

alone.  
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Figure 5.51:  NO2 (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% energy equivalent DME concentration fumigated in the intake air at various
intake air temperatures compared to BP15, all at 3° BTDC fuel injection timing 
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 Figure 5.53 shows Brake Specific Energy Consumption (BSEC) (MJ/kWh) for 

mixed mode combustion at 1800 rpm and 61 ft-lb torque with 25% energy equivalent 

DME concentration fumigated in the intake air at various intake air temperatures 

compared to BP15, all at 3° BTDC fuel injection timing.  At the same power, the energy 

of fuel required was less for the 25% DME mixed mode combustion than with BP15 

diesel fuel alone. 
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Figure 5.52: Brake Specific Fuel Consumption (g/kWh) for mixed mode combustion at
1800 rpm and 61 ft-lb torque with 25% energy equivalent DME concentration fumigated
in the intake air at various intake air temperatures compared to BP15, all at 3° BTDC fuel
injection timing 
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 Figure 5.54 shows CO (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake 

air at various intake air temperatures compared to BP15, all at 3° BTDC fuel injection 

timing.  As shown in the figure, the amount of CO was higher with the 25% DME mixed 

mode combustion than with BP15 diesel fuel alone.  As the intake temperature was 

increased, the amount of CO decreased.  For the BP15 diesel fuel, the CO emissions were 

only 10% of what the same CO emissions with the 25% DME mixed mode combustion. 
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Figure 5.53: Brake Specific Energy Consumption (MJ/kWh) for mixed mode combustion
at 1800 rpm and 61 ft-lb torque with 25% energy equivalent DME concentration
fumigated in the intake air at various intake air temperatures compared to BP15, all at 3°
BTDC fuel injection timing 
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 Figure 5.55 shows CO2 (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake 

air at various intake air temperatures compared to BP15, all at 3° BTDC fuel injection 

timing.  As the intake air temperature was increased, the CO2 emissions increased for the 

25% DME mixed mode combustion.  Because of the intake air heating, the density of the 

air changes, and thus less mass of air is present in the intake air as it is drawn into the 

engine.  This results in less oxygen and nitrogen available in the combustion process, and 

thus a greater amount of CO2 because of the change in the mass flow rate of the reactants.  
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Figure 5.54: CO (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% energy equivalent DME concentration fumigated in the intake air at various
intake air temperatures compared to BP15, all at 3° BTDC fuel injection timing 
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 Figure 5.56 shows Methane (ppm) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake 

air at various intake air temperatures compared to BP15, all at 3° BTDC fuel injection 

timing.  As the intake air temperature increased, the Methane decreased for the 25% 

DME mixed mode combustion.  However, there was still 10ppm of Methane for the 25% 

DME mixed mode combustion at 70 °C temperature while only 2 pm with the BP15 

diesel alone.   
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Figure 5.55:  CO2 (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% energy equivalent DME concentration fumigated in the intake air at various 
intake air temperatures compared to BP15, all at 3° BTDC fuel injection timing 
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 Figure 5.57 shows Total Hydrocarbons (g/kg fuel) for mixed mode combustion at 

1800 rpm and 61 ft-lb torque with 25% energy equivalent DME concentration fumigated 

in the intake air at various intake air temperatures compared to BP15, all at 3° BTDC fuel 

injection timing.  As the intake air temperature increased, the amount of hydrocarbons 

decreased.   
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Figure 5.56: Methane (ppm) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% energy equivalent DME concentration fumigated in the intake air at various
intake air temperatures compared to BP15, all at 3° BTDC fuel injection timing 
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 Figure 5.58 shows Exhaust Temperature (°C) for mixed mode combustion at 1800 

rpm and 61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the 

intake air at various intake air temperatures compared to BP15, all at 3° BTDC fuel 

injection timing.  The temperatures are showing at the top of each bar on the graph.  As 

the intake air temperature increases, the exhaust temperature increases.  However, the 

exhaust temperature does not increase by the same amount that the intake air temperature 

was elevated to. 
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Figure 5.57: Total Hydrocarbons (g/kg fuel) for mixed mode combustion at 1800 rpm and
61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake
air at various intake air temperatures compared to BP15, all at 3° BTDC fuel injection
timing 

732



221 

 

 Figure 5.59 shows the GC Data for BP15 in comparison to mixed mode 

combustion with 25% energy equivalent DME concentration at 3° BTDC with increasing 

temperature.  As is seen in the figure, as the temperature increases when using DME, the 

concentration of Methane and DME begin to decrease, which results in an overall 

decrease in the total hydrocarbon emissions.  The figure shows a comparison to the BP15 

with increasing temperature.  What is also shown with the BP15 increasing temperature is 

that the small amounts of ethylene and other gases also decrease with increasing 

temperature.  What is also shown more clearly in this figure is the amount of butane that 
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Figure 5.58:  Exhaust Temperature (°C) for mixed mode combustion at 1800 rpm and 61
ft-lb torque with 25% energy equivalent DME concentration fumigated in the intake air at
various intake air temperatures compared to BP15, all at 3° BTDC fuel injection timing 
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is observed when using DME, although small in comparison to the Methane and DME 

observed.   

 Figure 5.60 shows Cylinder Pressure (bar) for mixed mode combustion at 1800 

rpm and 61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the 

intake air at various intake air temperatures compared to BP15, all at 3° BTDC fuel 

injection timing.  With increasing intake air temperature, the peak pressure for the 25% 

DME mixed mode combustion increases slightly but maintains the same shape and peak 

pressure.  
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Figure 5.59:  GC Data:  BP15 in comparison to mixed mode combustion with 25% energy 
equivalent DME concentration at 3° BTDC with increasing temperature 
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 Figure 5.61 shows heat release rate (J/deg) for mixed mode combustion at 1800 

rpm and 61 ft-lb torque with 25% energy equivalent DME concentration fumigated in the 

intake air at various intake air temperatures compared to BP15, all at 3° BTDC fuel 

injection timing.  With increasing intake air temperature, the LTHR and the HTHR are 
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Figure 5.60: Cylinder Pressure (bar) for mixed mode combustion at 1800 rpm and 61 ft-lb 
torque  with 25% energy equivalent DME concentration fumigated in the intake air at
various intake air temperatures compared to BP15, all at 3° BTDC fuel injection timing 
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advanced.  The peak of the LTHR decreases and the peak of the HTHR increases with 

increasing intake air temperature.  However, the combustion phasing and shape of the 

heat release for the BP15 diesel fuel remains constant.   
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Figure 5.61:  Heat Release Rate (J/deg) for mixed mode combustion at 1800 rpm and 61
ft-lb torque  with 25% energy equivalent DME concentration fumigated in the intake air
at various intake air temperatures compared to BP15, all at 3° BTDC fuel injection timing
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 Figure 5.62 shows bulk cylinder temperature (K) for mixed mode combustion at 

1800 rpm and 61 ft-lb torque with 25% energy equivalent DME concentration fumigated 

in the intake air at various intake air temperatures compared to BP15, all at 3° BTDC fuel 

injection timing.  With increasing intake air temperature the bulk cylinder temperature 

increases.   
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Figure 5.62:  Bulk Temperature (K) for mixed mode combustion at 1800 rpm and 61 ft-lb 
torque  with 25% energy equivalent DME concentration fumigated in the intake air at
various intake air temperatures compared to BP15, all at 3° BTDC fuel injection timing 
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 Figure 5.63 shows TEOM data for mixed mode combustion at 1800 rpm and 61 

ft-lb torque with 25% energy equivalent DME concentration fumigated with increasing 

intake air temperature.  As intake air temperature increase for the 25% DME mixed mode 

combustion, the mass of particulate increases per power output.   

  Figure 5.64 shows SMPS Data for BP-15 with 25% energy equivalent DME at 

1800 rpm and 61 ft-lbs compared with the Thermal Denuder at 40°C and 350°C at 3° 

BTDC with an Intake Air Temperature of 25°C and SMPS Data for BP-15 with 25% 

energy equivalent DME at 1800 rpm and 61 ft-lbs compared with the Thermal Denuder at 

40°C and 350°C at 3° BTDC with Intake Air Temperature at 70°C.  This data is also 
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Figure 5.63:  TEOM data for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% energy equivalent DME concentration fumigated with increasing intake air
temperature 
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compared to the BP15 conventional diesel at the same injection timing (red and blue lines 

in the figure) with an Intake Air Temperature of 25°C.  As the intake air temperature 

increases for the 25% DME mixed mode combustion, the number density of condensed 

particles in this size range increases, but the number of solid particles remains 

approximately the same with a shift towards larger particles.  Also, as indicated in the 

curve trends with increase intake air temperature, the peak maximum shifts towards 

larger particles.  In comparison to the BP15 conventional diesel, the 25% DME mixed 

mode combustion has 2/3 more solid particles.   
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Figure 5.64: SMPS Data: BP-15 with 25% energy equivalent DME at 1800 rpm and 61
ft-lbs compared with the Thermal Denuder at 40°C and 350°C at 3° BTDC with an Intake
Air Temperature of 25°C and SMPS Data for BP-15 with 25% energy equivalent DME at 
1800 rpm and 61 ft-lbs compared with the Thermal Denuder at 40°C and 350°C at 3°
BTDC with Intake Air Temperature at 70°C 
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5.8.3 Impact of Change in Cetane Number of the Fumigated Fuel 

A fourth set of experiments involved modifying the ignition quality of the system 

by adjusting the cetane number of the fumigated fuel to further reduce NOx emissions 

and improve efficiency.  The fuel brought into the intake was a combination of DME and 

Methane.  Again, there was a pilot injection of diesel fuel.   Gasesous and particulate 

matter emissions were collected.   

 Figure 5.65 shows NOx (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% DME energy equivalent with and without 5 SLPM (6.5% 

energy equivalent) Methane fumigated in the intake air at various intake air temperatures 

compared to BP15, at 7 and 1 ° BTDC fuel injection timing.  There was no change in 

NOx emissions with the addition of Methane in the intake air.  NOx emissions were 

reduced when the injection timing was retarded, but increased with increasing intake air 

temperature.   
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 Figure 5.66 shows NOx (g/kWh) for mixed mode combustion at 1800 rpm and 61 

ft-lb torque with 25% DME energy equivalent with and without % SLPM Methane 

fumigated in the intake air at various intake air temperatures compared to BP15, at 7 and 

1 ° BTDC fuel injection timing.  With the addition of 25% DME, on a power basis, the 

NOx emissions were reduced by approximately 10%.  When Methane was added to the 

intake air, another 5% NOx was reduced based on power output.  NOx emissions were 

reduced when the injection timing was retarded, but increased with increasing intake air 

temperature.   
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Figure 5.65: NOx (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% DME energy equivalent with and without 5 SLPM (6.5% energy equivalent)
Methane fumigated in the intake air at various intake air temperatures compared to BP15,
at 7 and 1 ° BTDC fuel injection timing 
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 Figure 5.67 shows NO (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% DME energy equivalent with and without 5 SLPM (6.5% 

energy equivalent) Methane fumigated in the intake air at various intake air temperatures 

compared to BP15, at 7 and 1 ° BTDC fuel injection timing.  As is shown in the figure, 

the 25% DME mixed mode combustion achieves a 50% reduction in NO emissions on a 

fuel basis.  However, when including Methane in the fumigation gases, this decrease is 

reduced to 35%.  NO is further reduced by retarding injection timing, but increase with 

increasing intake air temperature.   
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Figure 5.66: NOx (g/kWh) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% DME energy equivalent with and without 5 SLPM (6.5% energy equivalent)
Methane fumigated in the intake air at various intake air temperatures compared to BP15,
at 7 and 1 ° BTDC fuel injection timing 
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 Figure 5.68 shows NO2 (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% DME energy equivalent with and without 5 SLPM (6.5% 

energy equivalent) Methane fumigated in the intake air at various intake air temperatures 

compared to BP15, at 7 and 1 ° BTDC fuel injection timing.  NO2 emissions increase by 

175% over the BP15 diesel fuel with the addition of 25% DME mixed mode combustion, 

and that is reduced to 125% with the addition of Methane into the fumigated fuels.  The 

NO2 is further reduced when the injection timing is retarded, but there is very little effect 

on NO2 with increasing intake air temperature.   
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Figure 5.67: NO (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% DME energy equivalent with and without 5 SLPM (6.5% energy equivalent)
Methane fumigated in the intake air at various intake air temperatures compared to BP15,
at 7 and 1 ° BTDC fuel injection timing 
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 Figure 5.69 shows Brake Specific Fuel Consumption (BSFC) (g/kWh) for mixed 

mode combustion at 1800 rpm and 61 ft-lb torque with 25% DME energy equivalent with 

and without 5 SLPM (6.5% energy equivalent) Methane fumigated in the intake air at 

various intake air temperatures compared to BP15, at 7 and 1 ° BTDC fuel injection 

timing.  On a power basis, there is less mass of fuel required for the 25% DME mixed 

mode combustion and with Methane.  However, as injection timing is retarded and intake 

air temperature is increased, no change in fuel consumption is observed.   

 

0

2

4

6

8

10

12

14

BP15 7°BTDC BP15 25% DME
7°BTDC 

BP15 25% DME
5SLPM CH4

7°BTDC 

BP15 25% DME
5SLPM CH4

1°BTDC 

BP15 25% DME
5SLPM CH4

1°BTDC 50°C 

BP15 25% DME
5SLPM CH4

1°BTDC 60°C 

Test Condition

N
O

2 
(g

/k
g 

fu
el

)  
  .

Figure 5.68:  NO2 (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% DME energy equivalent with and without 5 SLPM (6.5% energy equivalent)
Methane fumigated in the intake air at various intake air temperatures compared to BP15, 
at 7 and 1 ° BTDC fuel injection timing 
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 Figure 5.70 shows Brake Specific Energy Consumption (BSEC) (MJ/kWh) for 

mixed mode combustion at 1800 rpm and 61 ft-lb torque with 25% DME energy 

equivalent with and without 5 SLPM (6.5% energy equivalent) Methane fumigated in the 

intake air at various intake air temperatures compared to BP15, at 7 and 1 ° BTDC fuel 

injection timing.  On a power basis, there is less fuel energy required for the 25% DME 

mixed mode combustion and with Methane.  However, as injection timing is retarded and 

intake air temperature is increased, no change in fuel consumption is observed.   
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Figure 5.69: Brake Specific Fuel Consumption (g/kWh) for mixed mode combustion at
1800 rpm and 61 ft-lb torque  with 25% DME energy equivalent with and without 5
SLPM (6.5% energy equivalent) Methane fumigated in the intake air at various intake air
temperatures compared to BP15, at 7 and 1 ° BTDC fuel injection timing 
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 Figure 5.71 shows CO (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% DME energy equivalent with and without 5 SLPM (6.5% 

energy equivalent) Methane fumigated in the intake air at various intake air temperatures 

compared to BP15, at 7 and 1 ° BTDC fuel injection timing.  As seen in the figure, 

adding the Methane to the fumigated DME reduced the CO emissions.  When the 

injection timing was retarded, the CO emissions were increased.  Intake air heating made 

the biggest impact on CO emissions by reducing it by over 50% from the unheated case.  
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Figure 5.70: Brake Specific Energy Consumption (MJ/kWh) for mixed mode combustion
at 1800 rpm and 61 ft-lb torque with 25% DME energy equivalent with and without 5
SLPM (6.5% energy equivalent) Methane fumigated in the intake air at various intake air 
temperatures compared to BP15, at 7 and 1 ° BTDC fuel injection timing 
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However, the CO emissions from all of these cases were still 6 to 10 times the amount in 

comparison to BP15 diesel fuel. 

 Figure 5.72 shows Total Hydrocarbons (g/kg fuel) for mixed mode combustion at 

1800 rpm and 61 ft-lb torque with 25% DME energy equivalent with and without 5 

SLPM (6.5% energy equivalent) Methane fumigated in the intake air at various intake air 

temperatures compared to BP15, at 7 and 1 ° BTDC fuel injection timing.  As seen in the 

figure, adding the Methane to the fumigated DME increased the hydrocarbon emissions.  

When the injection timing was retarded, the hydrocarbon emissions were increased.  

Intake air heating made some impact on hydrocarbon emissions, but was still 20% more 

than the case with 25% DME mixed mode combustion.  However, the hydrocarbon 
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Figure 5.71: CO (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% DME energy equivalent with and without 5 SLPM (6.5% energy equivalent)
Methane fumigated in the intake air at various intake air temperatures compared to BP15,
at 7 and 1 ° BTDC fuel injection timing 
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emissions from all of these cases were still 1.5 to 3 times the amount in comparison to 

BP15 diesel fuel. 

 Figure 5.73 shows CO2 (g/kg fuel) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% DME energy equivalent with and without 5 SLPM (6.5% 

energy equivalent) Methane fumigated in the intake air at various intake air temperatures 

compared to BP15, at 7 and 1 ° BTDC fuel injection timing.  As seen in the figure, 

adding the Methane to the fumigated DME increased the CO2 emissions.  When the 

injection timing was retarded, the CO2 emissions were decreased.  When the intake air 

was heated, the CO2 emissions increased.  However, the CO2 emissions from all of these 

cases were higher in comparison to BP15 diesel fuel.  Because of the intake air heating, 

the density of the air changes, and thus less mass of air is present in the intake air as it is 
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Figure 5.72: Total Hydrocarbons (g/kg fuel) for mixed mode combustion at 1800 rpm and
61 ft-lb torque  with 25% DME energy equivalent with and without 5 SLPM (6.5% 
energy equivalent) Methane fumigated in the intake air at various intake air temperatures
compared to BP15, at 7 and 1 ° BTDC fuel injection timing 
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drawn into the engine.  This results in less oxygen and nitrogen available in the 

combustion process, and thus a greater amount of CO2 because of the change in the mass 

flow rate of the reactants. 

 Figure 5.74 shows Methane (ppm) for mixed mode combustion at 1800 rpm and 

61 ft-lb torque with 25% DME energy equivalent with and without 5 SLPM (6.5% 

energy equivalent) Methane fumigated in the intake air at various intake air temperatures 

compared to BP15, at 7 and 1 ° BTDC fuel injection timing.  As shown in the figure, 

Methane emissions increased in the exhaust gas for all cases but the BP15 diesel fuel 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

BP15 7°BTDC BP15 25% DME
7°BTDC 

BP15 25% DME
5SLPM CH4 7°BTDC 

BP15 25% DME
5SLPM CH4 1°BTDC 

BP15 25% DME
5SLPM CH4 1°BTDC

50°C 

BP15 25% DME
5SLPM CH4 1°BTDC

60°C 

Test Condition

C
O

2 
(g

/k
g 

fu
el

)  
   

.

Figure 5.73:  CO2 (g/kg fuel) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% DME energy equivalent with and without 5 SLPM (6.5% energy equivalent)
Methane fumigated in the intake air at various intake air temperatures compared to BP15, 
at 7 and 1 ° BTDC fuel injection timing 
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case.  While a little Methane was being formed for the 25% DME mixed mode 

combustion case, for the cases where Methane was being added to the fumigated fuel 

blend, the highest amounts were found in the exhaust by a factor of 6 to 8 times.   

 Figure 5.75 shows Exhaust Temperature (°C) for mixed mode combustion at 1800 

rpm and 61 ft-lb torque with 25% DME energy equivalent with and without 5 SLPM 

(6.5% energy equivalent) Methane fumigated in the intake air at various intake air 

temperatures compared to BP15, at 7 and 1 ° BTDC fuel injection timing.  Exhaust 
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Figure 5.74: Methane (ppm) for mixed mode combustion at 1800 rpm and 61 ft-lb torque 
with 25% DME energy equivalent with and without 5 SLPM (6.5% energy equivalent)
Methane fumigated in the intake air at various intake air temperatures compared to BP15,
at 7 and 1 ° BTDC fuel injection timing 
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temperature is fairly constant for this set of test conditions, except in the cases where the 

intake air temperature was increased.   

 Figure 5.76 shows GC Data for BP15 in comparison to mixed mode combustion 

with 25% energy equivalent DME concentration and with 25% energy equivalent DME 

concentration at various injection timing and with increasing temperature.  When the 

engine is operated with DME and with a Methane blend fumigated in the intake, more 

Methane is observed in the exhaust in comparison to the same DME concentration 

without the Methane fumigated in the intake air.  Retarding the injection timing towards 
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Figure 5.75: Exhaust Temperature (°C) for mixed mode combustion at 1800 rpm and 61 
ft-lb torque  with 25% DME energy equivalent with and without 5 SLPM (6.5% energy
equivalent) Methane fumigated in the intake air at various intake air temperatures
compared to BP15, at 7 and 1 ° BTDC fuel injection timing 
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TDC yields an increase in Methane emissions regardless of the Methane fumigation in 

the intake air.  Increasing the intake air temperature seems to have more effect on the 

DME and Methane emissions than a change in injection timing.   

 Figure 5.77 shows Cylinder Pressure (bar) for mixed mode combustion at 1800 

rpm and 61 ft-lb torque with 25% DME energy equivalent with and without 5 SLPM 

(6.5% energy equivalent) Methane fumigated in the intake air at various intake air 

temperatures compared to BP15, at 7 and 1 ° BTDC fuel injection timing.  As shown 

previously, with the addition of the 25% DME energy equivalent, the pressure trace 

shows a change from a distinct premixed and diffusion controlled phase of combustion to 
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Figure 5.76:  GC Data:  BP15 in comparison to mixed mode combustion with 25% 
energy equivalent DME concentration and with 25% energy equivalent DME 
concentration at various injection timing and with increasing temperature 
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a mostly premixed phase of combustion.  With the addition of Methane to the DME, the 

pressure increases.  A shift in the injection timing of the diesel fuel causes a shift in the 

combustion phasing of the peak pressure.  Heating the intake air with this fuel scheme 

causes an increase in the peak pressure from the base condition by about 3 bar.   
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Figure 5.77: Cylinder Pressure (bar) for mixed mode combustion at 1800 rpm and 61 ft-lb 
torque  with 25% DME energy equivalent with and without 5 SLPM (6.5% energy
equivalent) Methane fumigated in the intake air at various intake air temperatures
compared to BP15, at 7 and 1 ° BTDC fuel injection timing 
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 Figure 5.78 shows heat release rate (J/deg) for mixed mode combustion at 1800 

rpm and 61 ft-lb torque with 25% DME energy equivalent with and without 5 SLPM 

(6.5% energy equivalent) Methane fumigated in the intake air at various intake air 

temperatures compared to BP15, at 7 and 1 ° BTDC fuel injection timing.  With the 

addition of Methane with DME into the intake air, the LTHR and the HTHR seem 

unaffected, but there is a decrease in the heat release from the diesel portion of the 

combustion.  A shift in the injection timing of the diesel fuel causes an increase in the 

HTHR portion and the diesel fuel portion to be retarded.  When using intake air heating, 

the LTHR and HTHR occur earlier in the combustion phasing while the combustion 

phasing and magnitude of the diesel combustion are the same in comparison for the cases 

of the three temperatures ( 25°C, 50°C, and  60°C).  For the cases where no temperature 

is indicated, it should be assumed that this is the 25°C case.  The LTHR is reduced, and 

the HTHR portion is increased as the intake air is heated.  
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 Figure 5.79 shows bulk cylinder temperature (K) for mixed mode combustion at 

1800 rpm and 61 ft-lb torque with 25% DME energy equivalent with and without 5 

SLPM (6.5% energy equivalent) Methane fumigated in the intake air at various intake air 

temperatures compared to BP15, at 7 and 1 ° BTDC fuel injection timing.  As shown in 
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Figure 5.78:  Heat Release Rate (J/deg) for mixed mode combustion at 1800 rpm and 61
ft-lb torque with 25% DME energy equivalent with and without 5 SLPM (6.5% energy
equivalent) Methane fumigated in the intake air at various intake air temperatures
compared to BP15, at 7 and 1 ° BTDC fuel injection timing 
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the figure, the Methane portion of the fumigated fuel increases the bulk temperature and 

advances the combustion phasing.  With the retarding of the injection timing, the peak 

bulk temperature decreases, while the heat from the HTHR portion increases the bulk 

temperature.  Increasing the intake air temperature serves to advance the LTHR peak and 

to increase both the HTHR peak and the main diesel fuel peak temperatures.   
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Figure 5.79:  Bulk Temperature (K) for mixed mode combustion at 1800 rpm and 61 ft-lb 
torque  with 25% DME energy equivalent with and without 5 SLPM (6.5% energy
equivalent) Methane fumigated in the intake air at various intake air temperatures 
compared to BP15, at 7 and 1 ° BTDC fuel injection timing 
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5.9 Discussion 

 The following sections discuss the data from the experiments described in this 

chapter.  Each of the three sets of experiments were analyzed and results were separately 

shown.  In this section, the key observations of these research studies will be discussed.  

These include: 

! Reaction kinetics for DME that lead to the heat release 

! Explanation for reduction in NO emissions and increase in NO2 emissions 

! Effect of injection timing and addition of heated intake air temperature 

! Influence of HTHR on NO and main diesel combustion 

! Observed hydrocarbons in the exhaust species  

! Effect of Methane addition 

! Effect of mixed mode combustion on particulate matter 

5.9.1 DME Ignition and Reaction Kinetics 

Pfahl and coworkers were able to measure the self-ignition behavior of diesel-

relevant fuels as homogeneous mixtures using a high pressure shock tube [13].  Of the 

fuels they investigated, DME was also investigated in the temperature range of 650-

1300K.  They showed that DME exhibited a two step self ignition: a cool flame process 

at lower temperatures, followed by a negative temperature coefficient (NTC) region and a 

second detonation-like process [13]. 
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Previously, many researchers have elucidated the reaction kinetics of dimethyl 

ether [23, 24, 26, 226, 227].  The oxidation chemistry is important in helping to 

understanding what is happening in this mixed mode combustion process, and in other 

diesel engine applications.  Figure 5.80 shows the overall reaction scheme for dimethyl 

ether oxidation [24].  Curran and coworkers studied dimethyl ether oxidation in a variable 

pressure flow reactor over the temperature range of 550-850K, in the pressure range of 

12-18 atm, and at equivalence ratios of 0.7 DD # 4.2 [24].  Curran and coworkers also 

performed studies in a jet stirred reactor at 1 and 10 atm, 0.2 DD # 2.5, and 800-1300K 

[23].  Dagaut and coworkers studies the oxidation and ignition of DME from 500-1100 K 

in a fused silica jet stirred reactor at 10 atm, and 0.2 DD # 1 [228]. 
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 Both Curran and Dagaut’s research propose that the fuel initiation reactions occur 

by thermal decomposition of the fuel and reactions with O2.  Both researchers discuss the 

methoxymethyl radical (CH3OCH2) formed by H-atom abstraction on DME.  From this 

reaction, the methoxymethyl radical further decomposes forming formaldehyde and CH3, 

and reacts with O2, HO2, and CH3.  The formation of the methoxymethylperoxy radical 

 

Figure 5.80: Overall reaction scheme for dimethyl ether oxidation [24] 
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(CH3OCH2OO—simplified as RO2) were included in Dagaut’s set of reactions, as well as 

a degradation reaction involving internal H-atom transfer yielding CH2OCH2OOH—

simplified at QO2H, self reactions and reactions with HO2, DME and formaldehyde 

[228].  A kinetic analysis involving a sensitivity analysis and reaction paths analysis was 

used to interpret the results of Dagaut’s work.  It was found that in the cool flame 

regions, the route R + O2  % RO2  %QO2H ( +O2) % OQ’O +2OH dominates ( R here is 

CH3OCH2).  The competition between the propagation and branching paths for QO2H is 

responsible in his model for the observed NTC.  Above a particular temperature that 

restarts the reactions in the second stage, the decomposition of R is favored and the 

formation of RO2 becomes negligible [228].    

 While there has been much research into the reaction rates and pathways of DME 

ignition and oxidation, it is difficult to determine the appropriate reactions and radicals 

involved in this current research with DME and NOx mechanisms for an appropriate 

discussion.  However, the work previously reported gives insight and an appropriate set 

of reactions for a model to be created. 

5.9.2 Explanation for shift in NO to NO2 emissions 

 According to work performed by Hori and coworkers, there is an effect of low 

concentrations of fuels on the conversion of NO to NO2 [40, 229].  In their research, they 

show that the effectiveness of promoting the conversion depends on the type of fuel.  

They studied 7 different types of fuel, from H2 and CH4, to longer chain hydrocarbons 

like i-C4H10 and n- C4H10 [40].  Their work showed that the effectiveness increased with 
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increasing carbon chain length.  Hori and coworkers went on to propose chemical kinetic 

reactions to explain the conversion of NO to NO2 [40].  This conversion is indicated to 

proceed mainly through the NO +HO2 % NO2 + OH route.  Therefore, if HO2 is 

available in high quantities, the conversion is more effective [40].  In their conclusions, 

they also state that the temperature range of the conversion is important, but did not 

address which ranges.  Also, they indicate that a C3H6 molecule would have a low 

conversion [40]. 

 In Hori and coworkers later research, experiments and kinetic models were 

performed to further investigate the role of hydrocarbons in the NO to NO2 conversion 

[229].  Five hydrocarbons were examined individually: methane, ethylene, ethane, 

propene, and propane.  The results indicated that ethylene and propane are more effective 

than Methane to oxidize the NO.  Highest effectiveness comes as a result of 

hydrocarbons that produce reactive radicals like OH and O atoms, that promote oxidation 

and lead to the HO2 production.  If the hydrocarbon produces radicals, like methyl and 

allyl, which reduce the oxidation by O2, this tends to reduce the NO2 to NO through the 

reaction R + NO2 % RO + NO ( R= CH3 or aC3H5).  Propane showed the greatest NO to 

NO2 conversion at the lowest temperature and had the widest temperature range.  

Ethylene was also found to have similar effectiveness as propane.  Methane and ethane 

were less effective.   

 Hori and coworkers research also showed that the effectiveness of the 

hydrocarbon is also dependent on the temperature range.  While hydrocarbon 

consumption was accelerated when the reaction temperature increased, the reduction in 

NO2 to NO was observed for longer residence times at the higher temperatures [229].   
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 Hori and coworkers research helps to explain the shift in NO2 to NO emissions 

seen in this research.  In the decomposition of DME, HO2 radicals are formed to 

propagate the reactions.  In the series of DME reactions, methyl radicals are produced, 

which provide for the reaction route that shifts the NO2 to NO.  However, when the small 

quantity of Methane was introduced with the fumigated DME, this provided an additional 

pool of methyl radicals to the fumigated hot gases, which provided for some of the NO2 

to shift back to NO, and for the reaction route of CH3 + HO2 % CH4 + O2, as described 

by Curran and coworkers occurring at approximately 750K [24].  As shown in the mixed 

mode combustion results with DME and without Methane, there was a small amount of 

Methane being formed, indicating that this reaction route must have been occurring.   

 Dagaut and coworkers published some research about the low temperature 

oxidation of DME and its mutual sensitization with NO [26].  They showed that at 

temperatures below 600K, the oxidation of DME was inhibited by NO, but above 600K 

NO enhances the oxidation of DME in the cool flame regime and yields methylformate 

and an additional HO2, which further provides the radicals to oxidize the NO to NO2.  

The study showed that below 616K, the NO inhibits the oxidation of DME due to the 

removal of the methoxymethyl peroxy (CH3OCH2O2) radical by reaction with NO, 

reducing the production of OH radicals and slowing the cool flame oxidation [26].  

Above about 620K, the oxidation of DME and NO is due to the additional production of  

CH3OCH2O ( also referred to as R) and OH which promote the oxidation in the following 

reactions:   RO2 + NO  % RO + NO2 and HO2 + NO % OH + NO2 [26]. 
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5.9.3 Chemkin Modeling of DME HCCI 

 To determine if the HO2 species was available in significant quantities, a model of 

a single cylinder from the DDC 2.5L engine was configured in Chemkin 4.1 to model the 

HCCI process of the DME combustion and ignition.  Chemkin is a fortran library that 

was designed to aid in modeling the chemical kinetics of a reacting system [230].  As 

shown in the previous heat release plots for the mixed mode combustion, the DME 

combustion is occurring as a homogeneous charge prior to the diesel pilot fuel injection.  

Thus, an HCCI zero dimensional model will provide relevant kinetic information about 

the combustion.  The high temperature and low temperature reaction mechanisms from 

Lawrence Livermore National Laboratory were used for the thermodynamic and reaction 

mechanism inputs [24, 25].  The system was assumed to be adiabatic with no heat loss 

and no wall heat transfer.  The Chemkin model was programmed to start at the point that 

the intake valve closes, with an engine speed of 1800 rpm, and cycle through 1 crank 

revolution.  The actual fuel and air for the testing was used to compute the mass fractions 

for the reaction species inputs, air and DME.  Initial conditions were assumed to be 25 °C 

and 1 bar. 

  Figure 2.13 shows the fuel decomposition and select species pool of interest for 

the 25% energy equivalent DME HCCI.  As shown, the HO2 species is mode available 

from the DME decomposition and heat generated by the reaction and the compression.  

As the DME decomposition reaches completion, the amount of HO2 production drops off, 

and the H2O2 species increases and plateaus.  As shown in this model, not all of the DME 

is reacted through the compression of the fuel.   

765



254 

 

Figure 5.82  shows the Chemkin model of 25% energy equivalent DME HCCI 

with HO2 in comparison to other species of interest.  In comparison, the production of 

HO2 far exceeds the production of the other species, thus making the NO to NO2 

conversion possible.  The Chemkin model confirms that HO2 is available at the time 
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Figure 5.81: Chemkin simulation of 25% energy equivalent DME HCCI, A/F ratio of
138.1 and # = .065, with various species ( Initial Temperature 25 °C, Pressure 1 atm,
Heat Loss 0.0 cal/sec) 

766



255 

 

when NO would be produced from the diesel fuel portion of the combustion, as the 

injection of the diesel fuel occurs at -7° BTDC. 
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767



256 

 

Figure 5.83 shows that the HO2 increases with increasing concentration of DME 

in the homogeneous charge.  As shown, the increase is smaller between the 35% and 44% 

energy equivalent DME and than the 25% and 35% energy equivalent DME.  
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Figure 5.83:  Chemkin model of 25%  (A/F ratio of 138.1 and # = .065), 35%  (A/F ratio 
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5.9.4 Injection Timing and Heated Intake Air Effect 

 In Figure 5.36, the injection timing of the diesel fuel is shown to only affect the 

ignition timing of the diesel fuel, with no apparent impact on the DME ignition.  While it 

would be expected that the heat release from the diesel fuel portion would be lower when 

using the DME in a mixed mode combustion configuration because the amount of fuel 

being injected is less, it is unclear from the heat release and bulk temperature curves if 

the HTHR portion of the DME ignition contributes to a faster vaporization and additional 

heat release from the diesel fuel portion.    

 With retarded injection timing, the NOx emissions decrease with a decrease in the 

NO and NO2 emissions.  One could conclude that with the retarded timing, there is less 

time for thermal NO formation and also less time for the light hydrocarbon species to 

reach the NO and react to form NO2.  With the retarded injection timing, the peak 

pressure finishes later, and the bulk temperature is lower for the diesel fuel portion of the 

heat release.  As seen in Figure 5.35, the advanced injection timing pressure curve has a 

secondary peak, which merges into one peak as the injection timing is retarded.  Also, the 

heat release is retarded in the same manner that the injection timing is retarded.  The heat 

release rate is slightly higher with the retarded timing: 18J/deg for 7° BTDC versus 25 

J/deg for 1° BTDC.   

 In the testing with the heated intake air system, an advance of the DME LTHR 

and HTHR was observed.   With increasing intake air temperature, the LTHR portion 

decreases slightly, and the HTHR portion increases slightly.  However, the temperature 

did not impact the timing of the diesel fuel ignition nor the magnitude.  With increasing 
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intake air temperature, the bulk temperature increased.  This resulted in an increase in the 

NOx emissions, with an increase in NO and a decrease in NO2.  CO, Methane and total 

hydrocarbons were lower as the intake air was heated.  Also, there was less DME present 

in the exhaust gas, so the heating allowed for greater combustion efficiency of the DME.  

The TEOM and SMPS data, Figures 5.63 and 5.64, showed that the intake air heating 

produced an increase in the total PM mass, and an increase in the number of particles 

observed in the accumulation mode.  

5.9.5 Influence of High Temperature Heat Release from DME 

 As shown in  Figures 5.13 and 5.24, with increasing DME concentration the NO 

emissions increase, with the high temperature heat release (HTHR) peak increasing and 

advancing towards the low temperature heat release (LTHR) peak.  A similar trend is 

seen within the DME/Air HCCI work performed by Iida and Igarashi in a single cylinder 

Yanmar engine [231].   

 In Iida and coworkers’ research, they measured a reduction in NOx emissions in 

comparison to diesel fuel [231].  While NOx increased with equivalence ratio with diesel 

fuel, from 100 to almost 250 ppm from their single cylinder Yanmar engine running at 

800rpm, for DME HCCI, the NOx were less than 50ppm [231].  However, the data does 

not reflect whether the NOx increase is due to NO or NO2.  This research reflects a 

different trend with respect to NOx emissions, and further elucidates the data presented 

by Iida and coworkers.  In this research, while the NOx emissions are still lower for the 

DME in a mixed mode combustion configuration, as the DME concentration is raised 
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beyond 25% energy equivalent, the amount of NO begins to increase and the NO2 

decreases.  The magnitude of the HTHR peak at the 44% DME energy equivalent begins 

to approach the same magnitude of the diesel fuel heat release peak when running normal 

BP15 diesel, indicating that possibly the thermal NO mechanism is contributing more 

than the NO2 pathways.  

5.9.6 Hydrocarbons in Exhaust Species 

 As is seen with HCCI engines, hydrocarbon species in the exhaust system 

increase.  In the case of this research, hydrocarbon species were seen to increase over 

normal diesel operation.   

 Total hydrocarbon species were collected with the AVL CEB II, and light 

hydrocarbon species were collected with a gas chromatograph.  As shown in this research 

and expressed in the literature, light hydrocarbon species are present in exhaust when 

diesel fuel is used.  In this mixed mode combustion configuration research with the DME 

and then with the DME/Methane blend, both species showed up in the GC results as 

unreacted species or species that were formed in the combustion process and frozen upon 

the exhaust stroke.  However, other light hydrocarbons that would show up in the BP15 

diesel fuel traces appeared but in much lower quantities in the mixed mode combustion 

configuration.   

 Based on the research by Hori and coworkers [40, 229], one could conclude that 

the light hydrocarbons that were present in the early part of the diesel spray vaporization 

and before its ignition, and in the gas phase oxidation around the diesel spray flame, were 
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able to participate in the low temperature combustion of the DME fuel and were involved 

in the NO to NO2 conversion.  It could be concluded that the light hydrocarbons from the 

diesel fuel spray were consumed in the reaction to produce the NO2, and then the other 

hydrocarbons that were collected and show peaks in the GC must be from the DME 

fueling, which were mostly DME and Methane.  The Methane contribution was higher 

when the mixed mode combustion configuration was fumigated with Methane.  One 

could make this assertion because in all work with DME, very little if any of the light 

hydrocarbons show up in the GC traces, while with normal diesel operation they appear.   

 While most of the light hydrocarbon species from the combustion process for 

each test condition could be quantified, there were some species that appeared at various 

retention times that are unknowns.  Figure 5.84 shows a GC trace for 25% DME energy 

equivalent mixed mode combustion at 7° BTDC.  As is shown in this figure, there are 

two unidentified peaks.  The first is located at 26.5 minutes and falling between dimethyl 

ether and the butane.  The other peak is located at 29.5 minutes.  It is unclear what either 

of these peaks may be.  However, with this particular GC set up, the higher molecular 

weight molecules take a longer time to show up in the trace, so it would be possible to 

conclude that the first peak at 26.5 minutes has a molecular weight between 46 (DME) 

and 58 (Butane).  It has been suggested that this peak may be butylene.  The second peak 

is more difficult to determine, but it would have a molecular weight higher than 58.   
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Figure 5.84: GC Trace for 25% DME energy equivalent mixed mode combustion at 7° 
BTDC: FID trace in the later retention time (x-axis) region at 225°C 
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5.9.7 Effect of Methane Addition 

 Based on the data collected for the DME/Methane blends, it appears that the 

Methane served to increase the pressure and bulk temperature from the combustion 

process, and reduced the heat release from the diesel fuel portion.    This led to lower 

NOx per power output, with higher NO and lower NO2 in comparison to the use of just 

DME as the fumigated fuel.  While the Methane addition seemed to make a slight impact 

on the combustion of DME and resulted in 2-3ppm less in the exhaust, there were overall 

higher hydrocarbon emissions, mainly of unreacted Methane.  The additional pressure 

and bulk temperature in the exhaust system provided more conversion of the CO to CO2, 

in comparison to a system with just DME.   

 According to research by Hori and coworkers, the Methane reactions in a low 

temperature environment would not support the reaction of NO to NO2 as effectively as 

some other hydrocarbons[229].  This is due to the slow oxidation of Methane that 

produces a limited amount of HO2, and the role of the methyl radicals in reducing NO2 

via this reaction:  CH3 + NO2 % CH3O +NO [229].  Thus, as seen in this research, the 

addition of a small amount of Methane to the fumigated fuel provided a larger pool of 

methyl radicals, as compared to the fumigation of DME alone, and resulted in an increase 

in the NO emissions in the exhaust gases as a result of the faster reaction of the NO2 

reduction to NO [229].  This is also seen and supported in the work by Amano and Dryer, 

as the oxidation of Methane more readily occurs via the CH3 + NO2 % CH3O +NO 

reaction [232]. 
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 Combustion characteristics of a natural gas/DME mixture were studied 

numerically in a HCCI engine configuration [219].  This data was compared to 

experimental data collected by Chen and coworkers [214].  Kong confirmed that the low 

temperature heat release is more pronounced as the amount of DME increases within the 

natural gas/DME blend.  His model also shows that as the natural gas and the DME 

concentration is increased, the amount of NOx emissions is decreased, confirming and 

comparing to the work by Chen and coworkers [219].  While it is important to note this 

work, and to note that Kong has provided temporal histories of combustion intermediate 

species, a direct comparison to the Methane and DME blend work cannot be made.  

Kong’s work does provide insight into the intermediate species from his model which 

would also be acting in this research [219].  Kong indicates that during the early chemical 

reactions, the concentrations of H2O2 and HO2 increase rapidly before the first stage of 

ignition, with a small amount of OH forming.  The species of H2O2 and HO2 are 

associated with the low temperature heat release.  As the compression continues and the 

intake air temperature rises, the temperature accelerates the decomposition of the H2O2 

into OH radicals [219].   During the second stage of ignition, the concentration of H2O2 

decreases as OH is formed.  The decomposition of the H2O2 at about 1000K and the 

consumption of the remaining fuel results in ignition in Kong’s calculations [219].   

5.9.8 Effect of Mixed Mode Combustion on particulate matter 

 Particulate Matter (PM) data from a TEOM and from an SMPS was collected in 

the experiments for this research.  Total PM data was collected with the TEOM.  With the 
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SMPS data, particles in the size rage of approximately 6nm to 250nm were collected.  

Some BG-2 filters were collected to get an indication of the PM composition.   

 Total PM increased with increasing DME concentration, and was higher with 

DME in a mixed mode combustion configuration than with BP15 diesel fuel.  Total PM 

also increased with retarded injection timing with the DME in a mixed mode combustion 

configuration.  Also, Total PM increased with increasing intake air temperature with the 

DME in a mixed mode combustion configuration and was higher than with BP15 diesel 

fuel.   

 SMPS data showed that with the DME in a mixed mode combustion configuration 

the number of particles in the size range was reduced.  Coupled with the TEOM data, this 

suggests that more large coarse particles were created with the DME in a mixed mode 

combustion configuration.   

 BG-2 filters were collected and digital pictures were presented.  The BG-2 filters 

suggest that the PM with the DME in a mixed mode combustion configuration have more 

mass than with the conventional BP15 diesel fuel regardless of injection timing.  Total 

hydrocarbon data shows that with the DME in a mixed mode combustion configuration, 

hydrocarbons are increased.  Since the total amount of light hydrocarbons from the GC 

could not be completely quantified, it is unclear what the total is.  However, from what 

was quantified, the GC showed approximately 30% of the hydrocarbons that were 

collected by the AVL CEB II in ppm.  Therefore, there may have been some heavier 

hydrocarbons agglomerating on the PM.   

 The increase in PM with the DME in a mixed mode combustion configuration 

may be the result of the increased heating in the cylinder providing for a wider zone for 

776



265 

 

PM agglomeration and for a sustained time period.  There were higher rates of PM 

formation.  This was due to more soot precursors in and around the spray flame as a 

result of the shift in stoichiometry in the diesel spray flame due to DME competing for O2 

to oxidize.  However, it is unclear whether all of the DME is being completely consumed, 

or if some of this is participating in the PM agglomeration.  Further study of the PM 

through soxlet extraction of the BG-2 filters would provide an indication of the amount of 

hydrocarbons and other materials that have condensed on the PM in the combustion zone 

versus the purely soot portion.   

5.10 Conclusions 

For this research, a  DDC 2.5L light duty turbocharged diesel was operated at 

1800 rpm and 61 ft-lbs of torque, a BMEP of approximately 4.1.  The engine was set to 

operate with a gaseous fuel fumigated in the intake air system, and with a single pulse 

injection of BP15 diesel fuel which was controlled for the entire set of research.  All 

research data points were compared to the same fuel injection scheme with the normal 

BP15 diesel operation.   

In the first set of experiments, DME concentration was spanned from 15% up to 

44% on an energy equivalent basis.  It was found that the lowest NOx emissions, and 

more specifically the lowest NO and highest NO2 was at a 25% DME energy equivalent 

for a diesel pilot injection timing of 7° BTDC.  For all DME concentrations, NOx was 

reduced by approximately 20% on a brake specific power basis.  For the 25% 

concentration, NO was 50% lower, and NO2 was over 140% higher in comparison to the 
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baseline diesel case.  As the bulk cylinder temperature increased above about 1100K in 

the second stage of the DME heat release, the NO to NO2 conversion subsided, and 

additional heating increased the thermal NO contribution.  Chemkin modeling of a HCCI 

system with DME showed an increase in the HO2 concentration with increasing DME 

concentration.  As the HO2 decreased, H2O2 increased, indicating temperature favoring 

the production of hydrogen peroxide.  Based on these results, the rest of the experiments 

were performed at this 25% DME concentration test condition as the baseline mixed 

mode combustion configuration. 

The second set of experiments involved spanning the fuel injection timing of the 

BP15 diesel fuel pilot.  NOx emissions decreased with retarded injection timing, up to 

40% in comparison to BP15 diesel emissions.  Both NO and NO2 emissions decreased.   

While the bulk temperature was kept between 1000K and 1100K for a longer residence 

time, the late injection timing of the diesel fuel relative to the 2nd stage heat release 

(HTHR) of the DME did not provide additional conversion of NO to NO2.  It is unclear if 

the temperature was too high for this conversion to occur, or if the availability of 

hydrocarbon species to produce the HO2 radicals and aid in the NO to NO2 conversion 

was lacking as a result of the late timing.  However, the late timing resulted in lower 

overall NOx emissions, and may be only the result of less time for thermal NO formation 

from the diesel fuel spray heat release.  

The third study utilized intake air heating to study its impact on the ignition and 

combustion of DME, and on the NOx emissions.  For all increases in the intake air 

temperature, the NOx increased.  The NO increased, but was still 50% less in comparison 

to the BP15 baseline diesel fuel.  NO2 emissions were also decreasing with increasing 
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intake air temperature.  With the increase in intake air temperature, the bulk temperature 

associated with the 2nd stage heat release (HTHR) was above 1200K.  Therefore, the 

heating of the air may have been too high to effectively convert NO to NO2, shortening 

this phase, and yet providing a longer time for thermal NO production.  The GC data 

showed that with the increase in intake air heating, the small amount of DME that was 

present was decreasing and the amount of Methane that was being produced from the 

available methyl radicals was also decreasing.  However, there was no significant 

increase in the NO2 emissions.  Again, this may indicate that a threshold temperature was 

reached where the NO to NO2 conversion was not effective. 

The final set of experiments involved fumigating the DME mixed mode 

combustion configuration with a small amount of Methane, 5 SLPM (6.5% energy 

equivalent), as well as taking an exploratory set of data on the effect of injection timing 

and intake air heating.  With this small addition of Methane, a 5 % reduction in NOx 

emissions was observed over the DME mixed mode combustion configuration.  NO 

emissions increased, while the NO2 emissions decreased.  As discussed previously, 

Methane is not considered as an effective hydrocarbon for the NO to NO2 conversion, so 

the results of the NO and NO2 seem reasonable in comparison to DME.  The NOx 

reduction trend with injection timing of the diesel fuel pilot and the NOx increase with 

the intake air heating follow the same pattern as seen with the DME mixed mode 

combustion configuration presented before.  It was clear from the pressure trace and heat 

release that the Methane was contributing to combustion process.  While pressure was 

higher when using the Methane in comparison to the DME mixed mode combustion 

configuration, there was a suppression of the diesel fuel heat release. 
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While the results and discussion of this research provide some interesting insight 

into a DME mixed mode combustion configuration, there are many questions that arise 

from the research. Those will be presented and discussed in Chapter 6.
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Chapter 6 
 

Summary, Conclusions, and Suggestions for Future Work 

6.1 Summary 

Before stating conclusions deduced from the experimental data, the motivation 

and objectives of this reseach will be restated.  The motivation for this research was to 

study strategies that could be used to reduce NOx emissions from compression ignition 

engines to meet current and future US EPA emissions regulations.  There were two 

strategies that were studied: 

1. Modifying the chemical structre of the fuel, specifically reducing the iodine 

value and thus saturation of methyl esters of biodiesel, to reduce the NOx 

emissions produced at the spray flame 

2. Using a mixed mode combustion system to modify the combustion process 

6.2 Observations and Conclusions 

Based on the results presented in Chapters 4 and 5 for each of the NOx reduction 

strategies, the following observations and conclusions can be made. 
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6.2.1 NOx Reduction through fuel modification: Hydrogenated Biodiesel 

Observations:  

1. The 20% soy-based biodiesel blend showed increases in NOx emissions across 

the 4 engine modes. 

2. The 40% soy-based biodiesel blend and both hydrogenated biodiesel blends 

showed NOx reductions for all 4 engine modes, and in all cases below the 

emissions levels for the conventional ULSD fuel.  

3. The pressure, heat release rate, needle lift and bulk cylinder temperature figures 

are all very similar for each fuel tested.  There was no correlation that could be 

made from minor changes in these figures to the amount of NOx emissions 

reduced.  

4. If a higher adiabatic flame temperature indicates an increase in the NOx emissions 

as a result of the number of double bonds in the biodiesel fuel, then a decrease in 

those double bounds would lead to a decrease in the NOx emissions.  This data 

and the adiabatic flame temperature calculation support this conclusion. 

5. Fuel injection pressure increased as the needle lifted higher to deliver the required 

fuel in the same timing.  This increase in fuel injection pressure and its affect on 

NOx emissions is unknown. 

6. It may also be possible that the chemistry of the fuel affects the physical 

properties of the fuel as it is delivered into the cylinder.  Specifically, that the 

higher density and lower volatility both produce a longer vaporization and a larger 

droplet spray field zone, thus causing higher NOx emissions.  However, the 
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density of the B100 and H100 are similar, which does not explain the reduction in 

NOx result for the H20 and H40 fuel blends.  The boiling range information for 

the neat fuels shows that the volatility of the biodiesel fuels are similar, and with 

higher volatility than the BP 15 diesel fuel.  Thus, the higher volatility and shorter 

vaporization would lead to lower NOx emissions.  Heat Release data showed 

similar vaporization, and yet lower NOx emissions with the H20 fuel.  

7. Similar NOx results were shown with single vs. double injection of fuel.   

 
 Conclusions: 

 
Based on the discussion regarding the theories for the biodiesel NOx effect, the 

results seen in the NOx emission data would have to be explained by the increase in 

adiabatic flame temperature for the soy-based biodiesel and the Prompt NOx effect as 

a result of the change in the biodiesel fuel properties between the soy-based biodiesel 

and the hydrogenated biodiesel.  Also, the use of a neat fuel in the experiments would 

have provided for a greater difference in the NOx data, thus indicating the actual 

impact of the change in the chemistry of the hydrogenated biodiesel fuel. 

6.2.2 NOx Reduction through Mixed Mode Combustion 

First Set of Experiments:  DME concentration spanned from 15% up to 44% on an 

energy equivalent basis 

1. It was found that the lowest NOx emissions, and more specifically the lowest 

NO and highest NO2 was at a 25% DME energy equivalent for a diesel pilot 

injection timing of 7° BTDC.   
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2. For all DME concentrations, NOx was reduced by approximately 20% on a 

power basis.   

3. For the 25% DME energy equivalent concentration, NO was the 50% lower 

and NO2 was over 140% higher in comparison to the baseline diesel case.  

4. As was shown in the bulk temperature information, as the temperature 

increased above about 1100K in the HTHR of the DME heat release, the NO 

to NO2 conversion subsided, and additional heating increased the thermal NO 

contribution.   

5. Chemkin modeling of a HCCI system with DME showed an increase in the 

HO2 concentration with increasing DME concentration.  As the HO2 

decreased, H2O2 increased, indicating temperature favoring the production of 

hydrogen peroxide. 

 
Conclusions: 
 
 In this system, greater utilization of DME did not produce a higher NOx 

reduction because of the increasing cylinder pressure driving up the adiabatic 

flame temperature of the fuels in the system and thus increasing the NO 

emissions.  While the DME concentration in the intake increasing, the NOx were 

the same, but a greater amount of NO was converted to NO2 because of the 

increasing HO2 concentration available. 
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Second Set of Experiments:  Spanning the fuel injection timing of the BP15 diesel fuel 

pilot injection 

1. NOx emissions decreased with retarded injection timing, up to 40% in 

comparison to BP15 diesel emissions.  Both NO and NO2 emissions 

decreased.    

2. While the bulk temperature was kept between 1000K and 1100K for a longer 

residence time, the late injection timing of the diesel fuel injection and heat 

release did not provide additional conversion of NO to NO2.  It is unclear if 

the temperature was too high for this conversion to occur, or if the availability 

of hydrocarbon species to produce the HO2 radicals and aid in the NO to NO2 

conversion was lacking as a result of the late timing.  

3. The late timing resulted in lower overall NOx emissions, and may be only the 

result of less time for the thermal NO from the diesel fuel spray heat release.  

 
Conclusions: 
 
 Earlier injection timing provides more time for NO to NO2 conversion but 

with higher overall NOx emissions.  

 
 
Third Set of Experiments:  Utilized intake air heating to study the impact on the ignition 

and combustion of DME, and on the NOx emissions 

1. For all increases in the intake air temperature, the NOx increased.  The NO 

increased, but was still 50% less in comparison to the BP15 diesel fuel.   

2. NO2 emissions were also decreasing with increasing intake air temperature.  
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3. With the increase in intake air temperature, the bulk temperature associated 

with the DME HTHR was above 1200K.  Therefore, the heating of the air 

may have been too high to effectively convert NO to NO2, shortening this 

phase, and yet providing a longer time for thermal NO production.   

4. The GC measurement of exhaust composition showed that with the increase in 

intake air heating, the small amount of DME that was present was decreasing 

and the amount of methane that was being produced from the available methyl 

radicals was also decreasing.   

 
Conclusions: 
 
 Earlier retarded ignition of the DME would require cooling the intake air, 

thus providing more time for HO2 production and NO to NO2 conversion.   

 

Fourth Set of Experiments:  Fumigation of the DME Mixed Mode Combustion 

configuration with a small amount of methane, 5 SLPM (6.5% energy equivalent), as 

well as taking an exploratory set of data on the effect of injection timing and intake air 

heating   

1. With this small addition of methane, a 5 % reduction in NOx emissions was 

observed over the DME Mixed Mode Combustion configuration.   

2. NO emissions increased, while the NO2 emissions decreased.   

3. The NOx reduction trend with injection timing of the diesel fuel pilot and the 

NOx increase with the intake air heating follow the same pattern as seen with 
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the DME Mixed Mode Combustion configuration:  as timing is retarded, NOx 

decreases and as intake air is heated, NOx increases.   

4. It was clear from the pressure and heat release rate figures that the methane 

was contributing to combustion process.  While pressure was higher when 

using the methane in comparison to the DME Mixed Mode Combustion 

configuration, there was a suppression of the diesel fuel heat release. 

 

Conclusions: 

 The presence of the methane, and therefore the methyl radical in the 

presence of NO2 provided for the reaction CH3 + NO2 % CH3O +NO, and thus 

the oxidation and utilization of methane to occur in the system.  

6.3 Suggestions for Future Work 

Upon examination of the results and conclusions, it is apparent that this research 

could be extended to gain further insight.  The suggestions for further work will be 

discussed by the strategy that was researched. 

6.3.1 NOx Reduction through fuel modification: Hydrogenated Biodiesel 

While the research aimed to demonstrate that the hydrogenated biodiesel fuel 

could reduce NOx emissions, there were some theories that were not addressed and some 

questions that deserve further research. 
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1. Comparison of the hydrogenated biodiesel fuel to other researchers’ data should 

be pursued if possible.  However, performing further experiments with the 

hydrogenated biodiesel fuel with modifications of fuel injection parameters, 

engine turbocharger and EGR parameters may yield more explanation of why this 

particular engine is yielding lower NOx emissions while other researchers are 

showing neutral or increase NOx emissions with methyl oleate. 

2. A study of the effect of fuel injection pressure could be completed, with holding 

the injection timing constant and observing the change in exhaust emissions based 

on changes in injection pressure of the fuel spray.   

3. The work by Boulanger and coworkers suggests that isolating the physical 

properties of the methyl esters can provide insight through experimentation and 

modeling of the physics of the process [204].  Specifically, comparing methyl 

oleate and methyl linoleate would explain what is found with changes in biodiesel 

chemical composition.  

4. Experimental work in spray break up and droplet vaporization time scales would 

be useful to explain the onset of ignition for different methyl esters.   

5. Imaging of biodiesel fuel spray, plume size and thermal mapping similar to the 

work by Dec [15, 29, 233] would be useful to determine if the burning of the 

biodiesel is creating a reduced area for NOx production in relation to the 

temperature of the flame zone. 
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6.3.2 NOx Reduction through Mixed Mode Combustion 

While the research aimed to demonstrate a mixed mode combustion system with 

as much NOx reduction as possible, there are observations that suggest further research.   

 

1. After reviewing the diesel pilot injection data, it appears that advancing the pilot 

diesel to 9 ° BTDC or earlier may have allowed for a higher DME content to be 

used, and thus reduced the heat release from the HTHR DME as a result of the 

diesel fuel pilot vaporization.  This may delay the onset of H2O2 production, and 

increase the HO2 radical for greater NO to NO2 conversion.  

2. There are other methods that would essentially reduce the fast heat release of 

HTHR DME ignition, prolonging the low temperature combustion and conversion 

of the NO to NO2.  This might include the use of EGR or some gaseous fuel that 

slows the kinetics of the second stage heat release.  Also, liquid fuels that would 

form light hydrocarbons through pyrolysis would be of interest since those 

components would potentially be involved in the low temperature combustion in 

the reactions outside of the fuel spray. 

3. Based on the work by Hori [40, 229], the suggestion that propane and ethane 

would produce more conversion of NO to NO2 in the low temperature combustion 

would be of interest to study in combination with DME.  The radical contribution 

of the propane may increase the temperature range for the conversion, and 

produce a greater result.   
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4. Use of a motored engine would provide a means to study the partial oxidation 

products in the exhaust through adjustment of the compression ratio and 

quenching of the exhaust after partial combustion [234].  This would help explain 

the types of gaseous hydrocarbons in the exhaust in this mixed mode combustion 

process. 

5. Some further work into understanding the increase in particulate matter mass is 

suggested by this data.  While much research into DME shows that this and many 

other oxygenates reduce particulate matter emissions, it is unclear why this mixed 

mode combustion process would be producing more particulate matter.  

6. To assist in elucidating what occurs in the HCCI combustion process of DME and 

DME /methane blend, a series of models could be developed with Chemkin.  The 

chemical mechanisms for methane combustion have been available for some time, 

and the mechanisms for DME combustion have been developed by several groups 

[23, 235].  It seems that the mechanisms developed by Lawrence Livermore 

National Laboratory are the most common set in use [23, 142].   These could be 

incorporated with NOx mechanisms (if not already available in the DME and 

methane mechanisms) so that the model can yield NO and NO2 predictions.  It 

would be important to consider the work by Hori and Dagaut in the NOx 

modeling mechanisms selection[26, 229].  Researchers have shown that simple 

zero dimensional kinetic models are sufficient to predict the combustion process 

in an HCCI engine, since the heat release is a global non-propagating autoignition 

process [142].  In the case of a pilot injection of fuel, the modeling becomes more 

difficult as CFD code would be required to completely model the system.    
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7. Using combustion video of the engine combustion process may provide more 

significant indication of what is occurring during the process.  While flame 

luminosity in the infrared and normal light would show the diesel flame ignition, 

the DME cool flame would be best observed by ultraviolet light. Thus, a camera 

and filters capable of both would provide the best inspection and evidence of 

continued experimentation with DME in a mixed mode combustion process. 

791



 

 

Bibliography 

1. EPA. Final Emission Standards for 2004 and Later Model Year Highway Heavy-
Duty Vehicles and Engines (EPA 420-F-00-026).  2000  [cited. 

2. Demirbas, A., Biodiesel Impacts on Compression Ignition Engine (CIE): Analysis 
of Air Pollution Issues Relating to Exhaust Emissions. Energy Sources, 2005(27): 
p. 459-558. 

3. Ross, R., Air Pollution and Industry. 1972, New York, New York: Van Nostrand 
Reinhold Company. 

4. Wark, K., Warner, C., Davis, W., Air Pollution: Its Origin and Control. 1998, 
Menlo Park, CA: Addison Wesley Longman, Inc. 

5. WHO, Diesel Fuel and Exhaust Emissions. 1st ed. 1996, Stuttgart, Germany: 
World Health Organization,Wissenschaftliche Verlagsgesellschaft. 389. 

6. Stone, R., Introduction to Internal Combustion Engines; 2nd edition. 2nd ed. 
1992, Warrendale, PA: Society of Automotive Engineers. 

7. Blakeman, P.G., Chiffey, A.F., Phillips, P.R., Twigg, M.V., Walker, A.P., 
Developments in diesel emission aftertreatment technology. Society of 
Automotive Engineers, 2003(2003-01-3753E). 

8. EPA. Heavy-Duty Engine and Vehicle Standards and Highway Fuel Sulfur 
Control Requirements (EPA420-F-00-057).  2000  [cited. 

9. EPA. Proposed Heavy-Duty Engine and Vehhicle Standards and Highway Diesel 
Fuel Sulfur Control Requirements (EPA420-F-00-022).  2000  [cited. 

10. EPA. Clean Diesel Trucks, Buses, and Fuel: Heavy-Duty Engine and Vehicle 
Standards and Highway Diesl Fuel Sulfur Control Requirements ( the "2007 
Heavy-Duty Highway Rule").  2001  [cited. 

11. Heywood, J.B., Internal Combustion Engine Fundamentals. 1988, New York: 
McGraw-Hill. 

12. Glassman, I., Combustion. 2nd ed. 1996, Orlando, FL.: Academic Press. 

13. Pfahl, U., Fieweger, K., Adomett, G., Self-Ignition od Diesel-Relevant 
Hydrocarbon-Air Mixtures under Engine Conditions. International Symposium on 
Combustion (26th), 1996: p. 781 - 789. 

792



281 

 

14. Higgins, B., Siebers, D., Diesel-Spray Ignition and Premixed-Burn Behavior. 
Society of Automotive Engineers, 2000(2000-01-0940). 

15. Dec, J., Espey, C., Chemiluminescence Imaging of Autoignition in a DI Diesel 
Engine. Society of Automotive Engineers, 1998(982685). 

16. Curran, H., Gaffuri, P., Pitz, W., Westbrook, C., A Comprehensive Modeling 
Study of n-Heptane Oxidation. Combustion and Flame, 1998. 114: p. 149-177. 

17. Westbrook, C., Chemical Kinetics of Hydrocarbon Ignition in Practical 
Combustion Systems. International Symposium on Combustion (28th), 2000. 28: 
p. 1563-1577. 

18. Curran, H., Gaffuri, P., Pitz, W., Westbrook, C., A Comprehensive Modeling 
Study of iso-Octane Oxidation. Combustion and Flame, 2002. 129: p. 253-280. 

19. Flynn, P., Durrett, R., Hunter, G.., Loye, A.,  Akinyemi, O., Dec, J., Westbrook, 
C., Diesel Combustion:  An Integratged View Combining Laser Diagnostics, 
Chemical Kinetics, and Empirical Validation. Society of Automotive Engineers, 
1999(1999-01-0509). 

20. Tanaka, S., Ayala, F., Keck, J., Heywood, J., Two-stage ignition in HCCI 
combustion and HCCI control by fuels and additives. Combustion and Flame, 
2003. 132: p. 219-239. 

21. Nash, J.J., Francisco, J.S., Unimolecular Decomposition Pathways of Dimethyl 
Ether: An Ab Initio Study. J. Phys. Chem. A, 1998. 102(1): p. 236-241. 

22. Maricq, M.M., Szente, J.J., Hybl, J.D., Kinetic Studies of the Oxidation of 
Dimethyl Ether and Its Chain Reaction with Cl2. J. Phys. Chem. A, 1997. 
101(28): p. 5155-5167. 

23. Curran, H., Pitz, W., Westbrook, C., Dagaut, P., Boettner, J-C., Cathonnet, M., A 
Wide Range Modeling Study of Dimethyl Ether Oxidation. Inter. Journal of 
Chemical Kinetics, 1998. 30(3): p. 229-241. 

24. Curran, H., Fischer, S., Dryer, F., The Reaction Kinetics of Dimethyl Ether. II:  
Low-Temperature Oxidation in Flow Reactors. International Journal of Chemical 
Kinetics, 2000. 32(12): p. 741-769. 

25. Fischer, S., Dryer, F., Curran, H., The Reaction Kinetics of Dimethyl Ether. I:  
High-Temperature Pyrolysis and Oxidation in Flow Reactors. Int . Journal of 
Chemical Kinetics, 2000. 32: p. 713 - 740. 

26. Dagaut, P., Luche, J.,  Cathonnet, M., The Low Temperature Oxidation of DME 
and Mutual Sensitization of the Oxidation of DME and Nitric Oxide:  

793



282 

 

Experimental and Detailed Kinetic Modeling. Combust. Sci. and Tech., 2001. 
165: p. 61 - 84. 

27. Obert, E., Internal Combustion Engines: Analysis and Practice. 2nd ed. 1950, 
Scranton, PA: International Textbook Company. 

28. Chiu, W., Shahed, S., Lyn, W., A Transient Spray Model for Diesel Combustion. 
society of Automotive Engineers- Transactions, 1976. 85(760128): p. 502-512. 

29. Dec, J., A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet 
Imaging. Society of Automotive Engineers, 1997(970873): p. 1 - 30. 

30. Fenimore, C., Formation of Nitric Oxide in Premixed Hydrocarbon Flames. 
International Symposium on Combustion (13th), 1970: p. 373-380. 

31. Turns, S., An Introduction to Combustion: Concepts and Applications. 1996, New 
York: McGraw-Hill, Inc. 

32. Bowman, C., Control of Combustion-Generated Nitrogen Oxide Emissions: 
Technology Driven by Regulations. International Symposium on Combustion 
(24th), 1992: p. 859-878. 

33. Miller, J., Bowman, C., Mechanism and Modeling of Nitrogen Chemistry in 
Combustion. Prog. Energy and Combust. Sci., 1989. 15(4): p. 287-338. 

34. Challen, B., Baranescu, R., Diesel Engine Reference Book. 2nd ed. 1999, 
Warrendale, PA: Society of Automotive Engineers. 

35. Merryman, E., Levy, A., Nitrogen Oxide Formation in Flames:  The roles of NO2 
and fuel nitrogen. International Symposium on Combustion (15th), 1975: p. 1073-
1083. 

36. Cernansky, N., Sawyer, R., NO and NO2 formation in a turbulent 
hydrocarbon/air diffusion flame. International Symposium on Combustion (15th), 
1975: p. 1039-1050. 

37. Hilliard, J., Wheeler, R., Nitrogen Dioxide in Engine Exhaust. Society of 
Automotive Engineers Transactions, 1979. 88(790691). 

38. Hori, M., Matsunaga, N. Conversion of NO to NO2 by the mixing of combustion 
of air containing low-level hydrocarbons. in Proceedings of the 3rd ASME/JSME 
Thermal Engineering Joint Conference. 1991. Reno, NV. 

39. Hori, N., Matsunaga, N., Marinov, N., Pitz, W., Westbrook, C., An experimental 
and kinetic calculation of the promotiion effect of hydrocarbons on the NO-NO2 
conversion in a flow reactor. International Symposium on Combustion (27th), 
1998: p. 389-396. 

794



283 

 

40. Hori, M., Matsunaga, N., Malte, P., Marinov, N., The effect of low-concentration 
fuels on the conversion of nitric oxide to nitrogen dioxide. International 
Symposium on Combustion (24th), 1992: p. 909-916. 

41. Meunier, P., Costa, M., Carvalho, M., The formation and destruction of NO in 
turbulent propane diffusion flames. Fuel, 1998. 77(15): p. 1705-1714. 

42. Cheng, A., Upatnieks, A., Mueller, C., Investigation of the impact of biodiesel 
fuelling on NOx emissions using an optical direct injection diesel engine. Int. J. 
Engine Research, 2006. 7(4): p. 297-347. 

43. Upatnieks, A., Mueller, C., Clean, Controlled DI Diesel Combustion Using 
Dilute, Cool Charge Gas and a Short-Ignition-Delay, Oxygenated Fuel. Society 
of Automotive Engineers, 2005(2005-01-0363). 

44. Upatnieks, A., Mueller,C., Martin, G., The Influence of Charge-Gas Dilution and 
Temperature on DI Diesel Combustion Processes Using Short-Ignition-Delay, 
Oxygenated Fuel. Society of Automotive Engineers, 2005(2005-01-2088). 

45. ISO, ISO/DIS 8178-2.2 Reciprocating internal combustion engines- Exhaust 
emission measurement   Part 2: Measurement of gaseous and particulate 
emissions at site, in International Organization for Standardization Draft 
International Standard. 1995, International Organization for Standarization. 

46. Johnson, J., Bagley, S., Gratz, L., Leedy, D., A Review of Diesel Particulate 
Control Technology and Emissions Effects- 1992 Horning Memorial Award 
Lecture. Society of Automotive Engineers, 1994. 

47. Richter, H., and Howard, J., Formation of Polycyclic Aromatic Hydrocarbons and 
Their Growth to Soot-- A Review of Chemical Reaction Pathways. Prog. Energy 
and Combust. Sci., 2000(26): p. 565-608. 

48. Warnatz, J., Maas, U., and Dibble, R.W., Combustion: Physical and Chemical 
Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. 
1996, Berlin: Springer-Verlag. 

49. Edgar, B., Dimethyl Ether and Other Oxygenated Fuels for Low Emission Diesel 
Engine Combustion, in Mechanical Engineering. 1997, University of California-
Berkley: Berkley, CA. p. 227. 

50. Eastwood, P., Critical Topics in Exhaust Gas Aftertreatment. 2000, 
Baldock,Hertfordshire, England: Research Studies Press LTD. 

51. Morris, J.D., Wallace, G.M., Evaluation of Impact of a Multifunctional Additive 
Package on Eurpoean Diesel Passenger Car Emission Performance. Society of 
Automotive Engineers, 1990. 

795



284 

 

52. Schmidt, D., Wong, V., Green, W., Weiss, M., Heywood, J., Review and 
Assessment of Fuel Effects and Research Needs in Clean Diesel Technology. 
ASME Spring Technical Conference, 2001. 36-1: p. 23-37. 

53. EPA. A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions 
(EPA420-P-02-001).  2002  [cited. 

54. Hess, H., The Impact of Oxygenated Fuels on Diesel Combustion and Emissions, 
in Energy & Geo-Environmental Engineering. 2002, Pennsylvania State 
University: University Park, PA. 

55. Truex, T., Interaction of Sulfur with Automotive Catalysts and the Impact on 
Vehicle Emissions- A Review. Society of Automotive Engineers, 1999(1999-01-
1543). 

56. Baranescu, R., Influence of Fuel Sulfur on DIesel Particualte Emissions. Society 
of Automotive Engineers, 1998. 

57. Fleisch, T., McCarthy, C., Basu, A., Udovich, C., Charbonneau, P., Slodowske, 
W., Mikkelsen, S., McCandless, J., A New Clean Diesel Technology:  
Demonstraion of ULEV Emissions on a Mavistar Diesel Engine Fueled with 
DImethyl Ether. Society of Automotive Engineers, Inc., 1995(950061): p. 42 - 53. 

58. Wakai, K., Nishis K., Yoshizaki T., Hiroyasu H., Ignition Delays of DME and 
Diesel Fuel Sprays Injected by a D.I. Diesel Injector. Society of Automotive 
Engineers, Inc., 1999(1999-01-3600). 

59. Verbeek, R., Van der Weide, J., Global Assessment of Dimethyl-Ether:  
Comparison with Other Fuels. Society of Automotive Engineers, Inc., 
1997(971607): p. 1 - 12. 

60. Phillips, J.G., Reader, G. T., The Use of DME as a Transportation fuel - A 
Canadian Perspective. ASME Fall Technical Conference, 1998. 31-3: p. 65-71. 

61. Sorenson, S.C., Mikkelsen S., Performance and Emissions of a DI Diesel Engine 
Fuelled with Neat Dimethyl Ether. Society of Automotive Engineers, 1995. 

62. Kapus, P.E., Cartellieri, W.P, ULEV Potential of a Car Engine Operated on 
Dimethyl Ether. Society of Automotive Engineers, 1995. 

63. Tijm, P., Waller, F., Toseland, B., and Peng, X. 'Liquid Phase Di-Methyl Ether 
TM' A promising New Diesel Fuel. in Energy Frontiers International Conference, 
Alaska. 1997. 

796



285 

 

64. Hansen, J., Voss, B., Joensen, F., Siguroardottir, I., Large Scale Manufacture of 
Dimethyl Ether - a New Alternative Diesel Fuel from natural Gas. Society of 
Automotive Engineers, Inc., 1995(950063): p. 70  - 79. 

65. McMurry, J., Organic Chemistry, 4th ed. 1995, Pacific Grove, CA: Brooks/Cole 
Publishing Company. 

66. Marchionna, M., Patrini, R., Giavazzi, F., Pecci, G. Linear Ethers as High Quality 
Components for Reformulated Diesel Fuels. in Symposium on Removal of 
Aromatics, Sulfur and Olefins from Gasoline and Diesel presented at the 212th 
National Meeting (Aug 25-29), American Chemical Society. 1996. Orlando, FL. 

67. Good, D., Francisco, J., Atmospheric Chemistry of Alternative Fuels and 
Alternative Chlorofluorocarbons. Chemical Review, 2003. 103: p. 4999-5023. 

68. Riesenberg, K.O., Faupel, W., Blaich, B., Stumpp, G., Ungerer, G., Polach, W., 
Leonard, R., Schneider, V., Ritter, E., Tschoke, H., Dieter, W., Warga, W., 
Kaczynski, B., Bauer, H., Diesel Fuel Injection. 1st ed. 1994, Stuttgart, Germany: 
Robert Bosch. 

69. Kapus, P., Ofner, H., Development of Fuel Injection Equipment and Combustion 
Systems for DI Diesels operated on Dimethyl Ether. Society of Automotive 
Engineers, 1995. 

70. Ofner, H., Gill, D.W., Krotscheck, C., DME as Fuel for CI engines - A New 
Technology and its Environmental Potential. Society of Automotive Engineers, 
1998. 

71. Glensvig, M., Sorenson, S.C., Abata, D. L., An Investigation of the Injection 
Characteristics of Dimethyl Ether. ASME Fall Technical Conference, 1997. 29-3: 
p. 77-84. 

72. Barbour, R.H., Elliott, N.G., Rickeard, D.J., Understanding Diesel Lubricity. 
Society of Automotive Engineers, 2000. 

73. Anastopoulos, G., Lois, E., Serdari, A., Zanikos, F., Stournas, S., Kalligeros, S., 
Lubrication Properties of Low-Sulfur Diesel Fuels inthe Presence of Specific 
Types of Fatty Acid Derivatives. Energy & Fuels, 2001. 15: p. 106-112. 

74. Nielsen, K., Sorenson, S., Lubricity Additive and Wear with DME in Diesel 
Injection Pumps. American Society of Mechanical Engineers, ICE Fall Technical 
COnference, 1999. 33-1(99-ICE-217): p. 145-153. 

75. Nikanjam, N., Diesel Fuel Lubricity: On the Path to Specifications. Society of 
Automotive Engineers, 1999(1999-01-1479). 

797



286 

 

76. Chapman, E., Boehman, A. Tijm, P.J.A., Waller, F., Emissions Characteristics of 
a Navistar 7.3L Turbodiesel Fueled with Blends of Dimethyl Ether and Diesel 
Fuel. Society of Automotive Engineers 2001 Transactions- Journal of Fuels & 
Lubricants, 2001. 110(Section 4): p. 2166-2175. 

77. Bechtold, R., Alternative Fuels Guidebook: Properties, Storage, Dispensing, and 
Vehicle Facility Modifications. 1997, Warrendale, PA: Society of Automotive 
Engineers. 

78. Nabi, M.N., Minami, M., Ogawa, H., and Miyamoto, N., Ultra Low Emission and 
High Performance Diesel Combustion with Highly Oxygenated Fuel. Society of 
Automotive Engineers, 2000. 

79. Kajitani, S., Chen, Z., Konno, M., Rhee, K., Engine Performance and Exhaust 
Characteristics of Direct-Injection Diesel Engine Operated with DME. Society of 
Automotive Engineers, Inc., 1997(972973). 

80. Ikeda, M., Mikami, M., Kojima, N., Exhaust Emission Characteristics of 
DME/Diesel Fuel Engine. Society of Automotive Engineers, Inc., 2000(2000-01-
2006). 

81. Chen, Z., Kajitani, S., Minegisi, K., Oguma, M., Engine Performance and 
Exhaust Gas Characteristics of a Compression Ignition Engine Operated with 
DME blended Gas Oil Fuel. Society of Automotive Engineers, 1998(982538). 

82. Chapman, E., Boehman, A., Tijm, P., Waller, F., Emission Characteristics of a 
Navistar 7.3L Turbodiesel Fueled with Blends of Dimethyl Ether and Diesel Fuel. 
Society of Automotive Engineers, Inc., 2001(2001-01-3626). 

83. Chapman, E., Emission Characteristics of a Navistar 7.3L Turbodiesel operated 
with blends of dimethyl ether (DME) and diesel fuel, in Energy and Geo-
Environmental Engineering, Fuel Science. 2002, Pennsylvania State University: 
University Park, PA. p. 185. 

84. McCandless, J., Li, Shurong, Development of a Novel Fuel Injection System 
(NFIS) for Dimethyl Ether – and Other Clean Alternative Fuels. Society of 
Automotive Engineers, 1997. 

85. Rouhi, A.M., Amoco, Haldor Topsoe Develop Dimethyl Ether as Alternaive 
Diesel Fuel, in C&EN. 1995. p. 37-39. 

86. Bunting, B., Combustion, Control, and Fuel Effects in a Spark Assisted HCCI 
Engine Equipped with Variable Valve TIming. Society of Automotive Engineers, 
Inc., 2006(2006-01-0872). 

798



287 

 

87. Frye, C., Boehman, A., Tijm, P.J.A., Comparison of CO and NO Emissions from 
Propane, n-Butane, and Dimethyl Ether Premixed Flames. Energy & Fuels, 1999. 
13(3): p. 650-654. 

88. Mintz, M., Wang, M., Vyas, A., Fuel-Cycle energy and Emissions Effects of 
Tripled Fuel-Economy Vehicles. Transportation Research Record, 1998. 
1641(Paper No. 98-1406): p. 115-122. 

89. Mintz, M., Vyas, A., Wang, M., Stodolsky, F., Cuenca, R., Gaines, L., From Here 
to Efficiency. Transporation Research Record, 2000. 1738(Paper No. 00-1259). 

90. Mintz, M., Wang, M., Vyas, A., Fuel-Cycle Energy and Emissions Impacts of 
Propulsion System/Fuel Alternatives for Tripled Fuel-Economy Vehicles. Society 
of Automotive Engineers, 1999(1999-01-1118). 

91. Stork, K., Singh, M., Wang, M., Vyas, A., Assessment of Capital Requirement for 
Alternative Fuels Infrastructure Under the Partnership for a New Generation of 
Vehicle Program. Transportation Research Record, 1998. 1641(Paper No. 98-
141): p. 123-129. 

92. Saricks, C., Rote, D., Stodolsky, F., Eberhardt, J., Alternatives to Diesel Fuel in 
California: Fuel-Cycle Energy and Emission Effects of Possible Replacements 
due to the Toxic Air Contaminant Diesel Particulate Decision. Transportation 
Research Record, 2000. 1738(Paper No. 00-0513): p. 86-93. 

93. Hatta, H. DME Transportation by Deep-Sea Tankers. in DME 1 Conference. 
2004. Paris, France: International DME Association. 

94. Matsuda, T. DME R&D in Japan. in 5th International DME Association 
Workshop. 2002. Rome, Italy: International DME Association. 

95. Graboski, M.S., and  McCormick,R.L., Combustion of Fat and Vegetable Oil 
Derived Fuels in Diesel Engines. Prog. Energy and Combust. Sci., 1998. 24(2): p. 
125-164. 

96. Suppes, G., Rui, Y., Regehr, E., Hydrophilic Diesel Fuels- Ignition Delay Times 
of Several DIfferent Fuel Blends. Society of Automotive Engineers, 
1997(971686). 

97. Duffield, J., Shapouri, H., Grabowski, M., McCormick, R., Wilson, R., U.S. 
Biodiesel Development:  New Market for Conventional and Genetically Modified 
Agricultural Products. 1998, Economic Research Service/USDA: Washington, 
DC. 

799



288 

 

98. Sharp, C., Howell, S., Jobe, J., The Effect of Biodiesel Fuels on Transient 
Emissions from Modern Diesel Engines, Part I Regulated Emissions and 
Performance. Society of Automotive Engineers, 2000(2000-01-1967). 

99. McCormick, R., Graboski, M., Alleman, T., Herring, A., Tyson, S., Impact of 
Biodiesel Source Material and Chemical Structure on Emissions of Criteria 
Pollutants from a Heavy-Duty Engine. Environ. Sci. Tech., 2001. 35(9): p. 1742-
1747. 

100. Kinney, A., Clemente, T., Modifying soybean oil for enhanced performance in 
biodiesel blends. Fuel Processing Technology, 2005. 86: p. 1137-1147. 

101. Knothe, G., Matheaus, A., Ryann III, T., Cetane numbers of branched and 
straight-chain fatty esters determined in an ignition quality tester. Fuel, 2003. 82: 
p. 971-975. 

102. Knothe, G., Dependence of biodiesel fuel properties on the structure of fatty acid 
alkyl esters. Fuel Processing Technology, 2005. 86: p. 1059-1070. 

103. Lapuerta, M., Armas, O.,Rodriguez-Fernandez,J., Effect of biodiesel fuels on 
diesel engine emissions. Progress in Energy and Combusion Science, 2008. 34: p. 
198-223. 

104. McCormick, R., Williams, A., Ireland, J., Brimhall, M., Hayes, R., Effects of 
Biodiesel Blends on Vehicle Emissions:  Fiscal Year 2006 Annual Operating Plan 
Milestone 10.4 (NREL/MP-540-40554). 2006, National Renewable Energy 
Laboratory: Golden, CO. 

105. Knothe, G., Sharp, C., Ryan, T., Exhaust Emissions of Biodiesel, Petrodiesel, 
Neat Methyl Esters, and Alkanes in a New Technology Engine. Energy & Fuels, 
2006. 20: p. 403-408. 

106. Sharp, C., Ryan III, T., Knothe, G,, Heavy-Duty Diesel Engine Emissions Tests 
Using Special Biodiesel Fuels. Society of Automotive Engineers, Inc., 
2005(2005-01-3671). 

107. Dec, J., PLIF imaging of NO formation in a DI diesel engine. Society of 
Automotive Engineers, 1998(980147). 

108. Lapuerta, M., Aramas, O., Ballesteros, R., Diesel particulate emissions from 
biofuels derived from Spanish vegetable oils. Society of Automotive Engineers, 
2002(2002-01-1657). 

109. Nabi, N., Shahadat, Z., Rhaman, S., Alam Beg, M., Behavior of diesel combustion 
and exhaust emission with neat diesel fuel and diesel-biodiesel blends. Society of 
Automotive Engineers, 2004(2004-01-3034). 

800



289 

 

110. Ban-Weiss, G., Chen, J., Buchholz, B., Dibble, R., A numerical investigation into 
the anomalous slight NOx increase when burning biodiesel: a new (old) theory. 
Fuel Processing Technology, 2007. 88: p. 659-667. 

111. Nabi, M., Akhter, M., Shahadat, M., Improvement of engine emission with 
conventional diesel fuel and diesel-biodiesel blends. Bioresource Technology, 
2006. 97: p. 372-378. 

112. Monyem, A., Van Gerpen, J., Canakci, J., The Effect of Timing and Oxidation on 
Emissions from Biodiesel-Fueled Engines. American Society of Agricultural 
Engineers, 2001. 44(1): p. 35-42. 

113. Musculus, M., On the Correlation between NOx Emissions and the Diesel 
Premixed Burn. Society of Automotive Engineers, 2004(2004-01-1401). 

114. Musculus, M., Measurements of the Influence of Soot Radiation on In-Cylinder 
Temperatures and Exhaust NOx in a Heavy Duty DI Diesel Engine. Society of 
Automotive Engineers, Inc., 2005(2005-01-0925). 

115. McCormick, R., Alvarez, J., Grabowski, M., NOx Solutions for Biodiesel: Final 
Report Report 6 in a series of 6 (NREL/SR-510-31465). 2003, National 
Renewable Energy Laboratory: Golden, CO. 

116. Szybist, J., Song, J., Alam, M., Boehman, A., Biodiesel combustion, emissions 
and emission control. Fuel Processing Technology, 2007. 88: p. 679-691. 

117. Tat, M., Investigation of oxides of nitrogen emissions from biodiesel-fueled 
engines, in Department of Mechanical Engineering. 2003, Iowa State University: 
Ames, IA. 

118. Boehman, A., Morris, D., Szybist, J., Esesn, E., The Impact of the Bulk Modulus 
of Diesel Fuels on Fuel Injection TIming. Energy & Fuels, 2004. 18 p. 1877 - 
1882. 

119. Szybist, J.P., Boehman, A.L., Taylor, J.D., McCormick, R.L., Evaluation of 
Formulation Strategies to Eliminate the Biodiesel NOx Effect. Fuel Processing 
Technology, 2005. 86(10): p. 1109-1126. 

120. Szybist, J., Kirby, S., Boehman,A., NOx Emissions of Alternative Diesel Fuels: A 
Comparitive Analysis of Biodiesel and FT Diesel. Energy & Fuels, 2005. 19: p. 
1484-1492. 

121. Zhang, Y., Boehman, A., Impact of Biodiesel on NOx Emissions in a Common 
Rail Direct Injection Diesel Engine. Energy & Fuels, 2007. 21: p. 2003-2012. 

801



290 

 

122. Choi, C., Bower, G., Reitz, R., Effects of Biodiesel Blended Fuels and Multiple 
Injections on D.I. Diesel Engines. Society of Automotive Engineers, 
1997(970218). 

123. Zhang, L., A Study of Pilot Injection in a DI Diesel Engine. Society of 
Automotive Engineers, Inc., 1999(1999-01-3493). 

124. Senatore, A., Cardone, M., Buono, D., Rocco, V., Allocca, L., Vitolo, S., 
Performance and Emissions Optimization of a CR Diesel Engine Fuelled with 
Biodiesel. Society of Automotive Engineers, Inc., 2006(2006-01-0235). 

125. Choi, C., Reitz, R., A numerical analysis of the emissions characteristics of 
biodiesel blended fuels. J. Engng for Gas Turb. and Power, 1999. 121: p. 31-38. 

126. Schmidt, K., Van Gerpen, J., The effect of biodiesel fuel composition on diesel 
combustion and emissions. Society of Automotive Engineers, 1996(961086). 

127. Iida, N., Suzuki, Y., Sato, G., Sawada, T., Effect of intake oxygen concentration 
on the characteristics of particulate emissions from a D.I. diesel engine. Society 
of Automotive Engineers, 1986(861233). 

128. Song, J., Zello, V., Boehman, A., Comparison of the impact of intake oxygen 
enrichment and fuel oxygenation on diesel combustion and emissioins. Energy & 
Fuels, 2004. 18: p. 1282-1290. 

129. Lapuerta, M., Aramas, O., Ballesteros, R.,Fernandez,J., Diesel emissions from 
biofuels derived from Spanish potential vegetable oils. Fuel, 2005. 84(773-780). 

130. Yuan, W., Hansen, A., Tat, M., Van Gerpen, J., Tan, Z., Spray, Ignition, and 
Combustion Modeling of Biodiesel Fuels for Investigating NOx Emissions. 
Transactions of the ASAE, 2005. 48(3): p. 933-939. 

131. Lapuerta, M., Hernandez, J., Gimenez, F., Evaluation of exhaust gas recirculation 
as a technique for reducing diesel engine NOx emissions. Proc. Instn. Mech. 
Engr. Part D, 2000. 214: p. 85-93. 

132. Dickey, D., Ryan T., Matheaus, A., NOx Control in Heavy-Duty Diesel Engines-- 
Wha is the Limit? Society of Automotive Engineers, Inc., 1998(980174). 

133. Lapuerta, M., Armas, O.,Hernandez, J., Effect of the Injection Parameters of a 
Common Rail Injection System on Diesel Combustion Through Thermodynamic 
Diagnosis. Society of Automotive Engineers, 1999(1999-01-0194). 

134. Neely, S., S., Huang, Y., Leet, J., Stewart, D., New Diesel Emission Control 
Strategy to Meet S Tier 2 Emissions Regulations. Society of Automotive 
Engineers, 2005(2005-01-1091). 

802



291 

 

135. Hardy, W.L., Reitz, R.D., A Study of the Effects of High EGR, High Equivalence 
Ratio, and Mixing Time on Emissions Lev els in a Heavy-Duty Diesel Engine for 
PCCI Combustion. Society of Automotive Engineers, Inc., 2006(2006-01-0026). 

136. Stanglmaier, R., Roberts, C., Homogeneous Charge Compression Ignition  
(HCCI):  Benefits, Compromises, and Future Engine Applications. Society of 
Automotive Engineers, 1999(1999-01-3682). 

137. DOE, Homogeneous Charge Compression Ignition (HCCI) Technology. 2001, 
U.S. Department of Energy, Energy Efficiency and Renewable Energy, Office of 
Transportation Technologies: Washington, D.C. 

138. Furutani, M., Ohta, Y., Komatsu, K., Onset Behavior of Low-Temperature Flames 
Caused by Piston Compression. JSAE Review, 1993. 14(2): p. 12-18. 

139. Pucher, G., Gardiner, D., Bardon, M., Battista, V., Alternative Combustion 
Systems for Piston Engines Involving  Homogeneous Charge Compression 
Ignition Concepts- A Review of Studies using Methanol, Gasoline, and Diesel 
Fuel. Society of Automotive Engineers, 1996(962063). 

140. Lee, K., Lee, C., Ryu, J., Kim, H., An Experimental Study on the Two-State 
Combustion Characteristics of a Direct-Injection Type HCCI Engine. Energy & 
Fuels, 2005. 19: p. 393-402. 

141. Milovanovic, N., Chen, R., A Review of Experimental and Simulation Studies on 
Controlled Auto-Ignition Combustion. Society of Automotive Engineers, 
2001(2001-01-1890). 

142. Flowers, D., Aceves, S., Westbrook, C., Smith, J., Dibble, Detailed Chemical 
Kinetic Simulation of Natural Gas HCCI Combustion: Gas Composition Effects 
and Investigation of Control Stragegies. Journal of Engineering for Gas Turbines 
and Power, 2001. 123: p. 433-439. 

143. Christensen, M., Johansson, B., AmnJus, P., Mauss, F., Supercharged 
Homogeneous Charge Compression Ignition. Society of Automotive Engineers, 
1998(980787). 

144. Martinez-Frias, A., S., Flowers, D., Smith, R., Dibbble, R., Thermal Charge 
Conditioning for Optimal HCCI Engine Operation. Journal of Energy Resources 
Technology-Transactions of the ASME, 2002. 124: p. 67 - 74. 

145. Ryan, T., Matheaus, A. Fuel Requirements for HCCI Engine Operation. in 8th 
Annual Diesel Engine Emissions Reduction (DEER) Meeting, Aug. 25-29. 2002. 
San Diego, CA. 

803



292 

 

146. Sun, Y., Reitz,  R., Modeling Diesel Engine NOx and Soot Reductgion with 
Optimized Two-Stage Combustion. Society of Automotive Engineers, Inc., 
2006(2006-01-0027). 

147. Ryan, T., Matheaus, A., Fuel Requirements for HCCI Engine Operation. Society 
of Automotive Engineers, 2003(2003-01-1813). 

148. Szybist, J., Bunting, B., Cetane Number and Engine Speed Effects on Diesel 
HCCI Performance and Emissions. Society of Automotive Engineers, 2005(2005-
01-3723). 

149. Stanglmaier, R., Ryan, T., Souder, J, HCCI Operation of a Dual-Fuel Natural 
Gas Engine for Improved Fuel Efficiency and Ultra-Low NOx Emissions at Low 
to Moderate Engine Loads. Society of Automotive Engineers, 2001(2001-01-
1897). 

150. Park, T., Atkinson, R., Clark, N., Traver, M., Atkinson, C., Operation of a 
Compression Ignition Engine with a HEUI Injection System on Natural Gas with 
Diesel Pilot Injection. Society of Automotive Engineers, 1999(1999-01-3522). 

151. Karim, G., Combustion in Gas Fueled Compression: Ignition Engines of the Dual 
Fuel Type. Journal of Engineering for Gas Turbines and Power, 2003. 125(3): p. 
827 - 836. 

152. Liu, Z., Karim, G. Examination of Combustion Characteristics in Dual Fuel 
Engines. in ASME Proceedings of the 7th AIAA/ASME Joint Thermophysics and 
Heat Transfer Conference. 1998. Albuquerque, New Mexico. 

153. Poonia, M., Ramesh, A., aur, R., Experimental Investigation of the Factors 
Affecting the Performance of a LPG- Diesel Dual Fuel Engine. Society of 
Automotive Engineers, 1999(1999-01-1123). 

154. Nazar, J., Ramesh, A., Nagalingam, B., Studies on Dual Fuel Operatioin of 
Karanja Oil and Its Bio-Diesel with LPG as the Inducted Fuel. Society of 
Automotive Engineers, 2006(2006-01-0237). 

155. Hardenburg, H., Hase,F., An Empirical Formula for Computing the Pressure Rise 
Delay of a Fuel from its Cetane Number and from the Relevant Parameters of 
Direct-Injection Diesel Engines. Society of Automotive Engineers Transactions, 
1979. 88(790493). 

156. Prakash, G., Ramesh, A., Shaik, S., An approach for estimation of ignition delay 
ina dual fuel engine. Society of Automotive Engineers, 1999(1999-01-0232). 

804



293 

 

157. Garnier, C., Bilcan, A., Le Corre, O., Rahmouni, C., Characteristics of a Syngas-
Diesel Fuelled CI Engine. Society of Automotive Engineers, 2005(2005-01-
1731). 

158. Khair, M., Diesel Engine Technology. Society of Automotive Engineers Seminar 
Series. 1998, Warrendale, PA: Society of Automotive Engineers. 

159. Khair, M., Lemaire, J., Fischer, S., Integration of Exhaust Gas Recirculation, 
Selective Catalytic Reduction, Diesel Particulate Filters, and Fuel-Borne Catalyst 
for NOx/PM Reduction. Society of Automotive Engineers, 2000(2001-01-1933). 

160. Scarnegie, B., Miller, W., Ballmert, B., Doelling, W., Fischer, S., Recent 
DPF/SCR Results Targeting US2007 and Euro 4/5 HD Emissions. Society of 
Automotive Engineers, 2003(2003-01-0774). 

161. Miller, W., Klein, J., Mueller, R., Doelling, W., Zuerbig, J., The Development of 
Urea-SCR Technology for US Heavy Duty Trucks. Society of Automotive 
Engineers, 2000(2000-01-0190). 

162. Khair, M., Lemaire, J., Fischer, S., Achieving Heavy-Duty Diesel NOx/PM Levels 
Below the EPA 2002 Standards--An Integrated Solution. Society of Automotive 
Engineers, Inc., 2000(2000-01-0187). 

163. Cho, S., Properly Apply Selective Catalytic Reduction for NOx Removal. 
Chemical Engineering Progress, 1994(January): p. 39-45. 

164. Johnson, T., Diesel Emission Control in Review. Society of Automotive 
Engineers, 2007(2007-01-0233). 

165. Twigg, M., Progress and future challenges in controlling automotive exhaust gas 
emissioins. Applied Catalysis B:  Environmental, 2007. 70: p. 2-15. 

166. Twigg, M., Development of platinum catalysts and their use in the control of 
vehicle exhaust emissions. Transactions of the Institutions of Mining and 
Metallurgy, Section B: Applied Earth Science, 2005. 114(3): p. B158-B172. 

167. Tennison, P., Lambert, C., Levin, M.,, NOx Control Development with Urea SCR 
on a Diesel Passenger Car. Society of Automotive Engineers, 2004(2004-01-
1291). 

168. Ogunwumi, S., Fox, R., Patil, M., He, L., In-Situ NH3 Generation for SCR NOx 
Applications. Society of Automotive Engineers, 2002(2002-01-2872). 

169. Allanson, R., Walker, A., Blakeman, P., Cooper, B., Hess, H., Silcock, P., 
Optimizing the Low Temperature Performance and Regeneration Efficiency of the 

805



294 

 

Continuously regenerating Diesel Particulate Filter (Cr-Dpf) System. Society of 
Automotive Engineers, 2002(2002-01-0428). 

170. Webpage. www.nett.ca/faq_diesel.html.  2004  [cited. 

171. Heck, R., Farrauto, R., Catalytic Air polution Control: Commercial Technology. 
2002, New York, New York: John Wiley & Sons, Inc. 

172. Webpage. www.detroitdiesel.com.  2004  [cited. 

173. Grob, R., Modern Practice of Gas Chromatography. 1995, New York, New york: 
John Wiley & Sons, Inc. 

174. Baugh, P., Gas Chromatography: A Practical Approach. 1993, Oxford, England: 
Oxford University Press. 

175. Barry, E., Grob, R., Columns for Gas Chromatography. 2007, Hoboken, NJ: John 
Wiley & Sons, Inc. . 

176. Sierra Instruments BG-1 Micro Dilution Test Stand Instruction Manual. 1995, 
Sierra Instruments,Inc.: Monterey, CA. 

177. AVL, AVL Indimodul 621 Indicom 1.3: Product Guide I and II. 2003, Graz, 
Austria: AVL List GmbH. 

178. Chapman, E., Hile, M., Pague, M., Song, J., Boehman, A., Eliminating the NOx 
Emissions Increase Associated with Biodiesel. American Chemical Society, 
Division of Fuel Chemistry, 2003. 48(2): p. 639-640. 

179. Chapman, E., Boehman, A., Emissions Characteristics of a Light Duty Diesel 
Engine Fueled with a Hydrogenated Biodiesel Fuel. American Chemical Society, 
Division of Fuel Chemistry, 2006. 51(1): p. 31-32. 

180. EMA, Technical Statement on the Use of Biodiesel Fuel in Compression Ignition 
Engines (www.enginemanufacturers.org). 2003, Engine Manufacturers 
Association: Chicago, IL. 

181. NREL, Biodiesel Handling and Use Guidelines, 3rd edition (DOE/GO-102006-
2358). 2006, National Renewable Energy Laboratory: Golden, CO. 

182. McCormick, R., Alleman, T., Ratcliff, M., Moens, L., Lawrence, R., Survey of the 
Quality and Stability of Biodiesel and Biodiesel Blends in the United States in 
2004 (NREL/TP-540-38836). 2005, National Renewable Energy Laboratory: 
Golden, CO. 

806

http://www.enginemanufacturers.org)/
http://www.nett.ca/faq_diesel.html
http://www.detroitdiesel.com/


295 

 

183. McCormick, R., Alleman, T., Waynick, J., Westbrook, S., Porter, S., Stability of 
Biodiesel and Biodiesel Blends: Interim Report. 2006, National Renewable 
Energy Laboratory: Golden, CO. 

184. Knothe, G., Gerpen, J., Krahl, J., The Biodiesel Handbook. 2005, Urbana, IL: 
AOCS Press. 

185. Ma, F., Hanna, M., Biodiesel production: a review. Bioresources Technology, 
1999. 70: p. 1-15. 

186. O'Brien, R., Farr, W., Wan, P., Introduction to Fats and Oils Technology. 2000, 
Champaign, IL: AOCS Press. 

187. Achenbach, S., Personal Communication about the Hydrogenation Process at 
Twin River Technologies, Cincinnati, OH., E. Chapman, Editor. 2006: State 
College, PA. 

188. ASTM, Test Method D6890-07a Standard Test Methof for Determination of 
Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by 
Combustion in a Constant Volume Chamber, in ASTM Book of Standards. 2007, 
American Society of Testing and Materials: West Conshohocken, PA. 

189. Knothe, G., Bagby, M., Ryan, T., Precombustion of Fatty Acids and Esters of 
Biodiesel. A Possible Explanation for Differing Cetane Numbers. Journal of 
American Oil Chemical Society, 1998. 75(8): p. 1007-1013. 

190. Haas, M., Report of Biodiesel Sample Coumpons Analysis. 2004, USDA: 
Philadelphia,PA. 

191. ASTM, Test Method D2500-99 Standard Test Method for Cloud Point of 
Petroleum Products, in ASTM Book of Standards. 1999, American Society of 
Testing and Materials: West Conshohocken, PA. 

192. ASTM, Test Method D97-96a Standard Test Method for Pour Point of Petroleum 
Products, in ASTM Book of Standards. 1996, American Society of Testing and 
Materials: West Conshohocken, PA. 

193. Kazancev, K., Makareviciene, V., Paulauskas, V., Janulis, P., Cold Flow 
properties of fuel mixtures containing biodiesel derived from animal fatty waste. 
European Journal of Lipid Science and Technology, 2006. 108(2006): p. 753-758. 

194. Moser, B., Haas, M., Winkler, J., Jackson, M., Erhan, S., List, G., Evaluation of 
partially hydrogenated methyl esters of soybean oil as biodiesel. European 
Journal of Lipid Science and Technology, 2007. 109(2007): p. 17-24. 

807



296 

 

195. ASTM, Test Method D446-07 Standard Specifications and Operating Instuctions 
for Glass Capillary Kinematic Viscometers, in ASTM Book of Standards. 2007, 
American Society of Testing and Materials: West Conshocken, PA. 

196. ASTM, Test Method D445-06, in ASTM Book of Standards. 2006, American 
Society of Testing and Materials: West Conshohocken, PA. 

197. Knothe, G., Steidley, K., Kinematic viscosity of biodiesel fuel components and 
realted compounds. Influence of compound structure and comparison to 
petrodiesel fuel components. Fuel, 2005. 84: p. 1059-1065. 

198. ASTM, Test Method D5865-07 Standard Test method for Gross Calorific Value 
of Coal and Coke, in ASTM Book of Standards. 2007, American Society of 
Testing and Materials: West Conshohocken, PA. 

199. ASTM, Test Method D2887-06a Standard Test Method for Boiling Range 
Distributioin of Petroleum Fractions by Gas Chromatography, in ASTM Book of 
Standards. 2007, American Society of Testing and Materials: West Conshohcken, 
PA. 

200. Choi, C.Y., Reitz, R.D., An Experimental Study on the effects of Oxygenated Fuel 
Blends and Multiple Injection Strategies on DI Diesel Engine Emissions. Fuel, 
1999. 78(11): p. 1303-1317. 

201. Zhang, Y., Boehman, A., Effects of Biodiesel on engine Performance and NOx 
Emissions in a Common Rial Diesel Engine, in Energy & Geo-Environmental 
Engineering. 2006, Pennsylvania State University: Uninversity Park, PA. 

202. Olikara, C., Borman, G., A Computer Program Calculating Properties of 
Equilibrium Combustion Products with Some Applications to I.C. Engines. 
Society of Automotive Engineers, Inc., 1975(750468). 

203. Zhang, Y., Effect of Biodiesel on Engine Performance and NOx Emissions in a 
Common Rail Diesel Engine, in Energy & Geo-Environmental Engineering. 2006, 
Pennsylvania State University: University Park, PA. 

204. Boulanger, J., Neill, S., Liu, F., Smallwood, G., Investigating renewable fuel 
combustion I: comparative simulations of a diesel engine fulled with n-C12 
alkane and n-C18 fatty acid-derived liquid-property fuel. International Journal of 
Environmental Studies, 2007. 64(4): p. 401-418. 

205. Carlucci, P., Ficarella, A., LaForgia, D., Effects on combustion and emissions of 
early and pilot fuel injections in diesel engines. International Journal of Engine 
Research, 2005. 6(1): p. 43-60. 

808



297 

 

206. Tennison, P., Reitz, R., An Experimental Investigation of the Effects of Common-
Rail Injection System Parameters on Emissions and Performance in a High-Speed 
Direct Injection Diesel Engine. Journal of Engineering for Gas Turbines and 
Power, 2001. 123: p. 167-174. 

207. Tat, M., Wang, P., Van Gerpen, J., Exhaust Emissions from an Engine Fueled 
with Biodiesel from High-Oleic Soybeans. J. Am Oil Chem Soc, 2007. 84: p. 865-
869. 

208. New fuel: The Lawnmower's tale. Economist, 1995. 33(7905): p. 79-82. 

209. Sorenson, S.C., Dimethyl Ether in Diesel Engines: Progress and Perspectives. 
Journal of Engineering for Gas Turbines and Power, ASME, 2001. 123: p. 652-
658. 

210. Liu, S., Clemente, E., Hu, T., Lu, S., Zhu, C., Combustion Characteristics of a 
DME HCCI Engine. Transactions of the CSICE ( Chinese Society for Internal 
Combustion Engines), 2005. 23(3): p. 207-212. 

211. Sahnashi, W., Azetsu, A., Oikawa, C., Effects of N2 and CO2 mixing on ignition 
and combustioin in a homogeneous charge compression ignition engine operate 
on dimethyl ether. International Journal of Engine Research, 2005. 6: p. 423-431. 

212. Sorenson, S., Dimethyl Ether in Diesel Engines:  Progress and Perspectives. 
Journal of Engineering for Gas Turbines and Power, 2001. 123 No. 3: p. 652 - 
658. 

213. Hountalas, D., Papagiannakis, R., Development of a Simulation Model for Direct 
Injection Dual Fuel Diesel-Natural Gas Engines. Society of Automotive 
Engineers, 2000(2000-01-0286). 

214. Chen, Z., Konno, M., Oguma, M., Yanai, T., Experimental Study of CI Natural-
Gas/DME Homogeneous Charge Engine. Society of Automotive Engineers, 
2000(2000-01-0329). 

215. Christensen, M., Hultqvist, A., Johansson, B., Demonstrating the Multi Fuel 
Capability of a Homogeneous Charge Compression Ignition Engine with Variable 
Compression Ratio. Society of Automotive Engineers, 1999(1999-01-3679). 

216. Aceves, S., Flowers, D., Martinez-Frias, J., Smith, J., Westbrook, C., Pitz, W., 
Dibble, R., Wright, J., Akinyemi, W., Hessel, R., A Sequential Fluid-Mechanic 
Chemical-Kinetic Model of Propane HCCI Combustion. Society of Automotive 
Engineers, 2001(2001-01-1027). 

217. Ogawa, H., Miyamoto, N.,Kaneko, N., Ando, H., Combustion Control and 
Operating Range Expansion in an HCCI Engine with Selective Use of Fuels with 

809



298 

 

Different Low-Temperature Oxidation Characteristics. Society of Automotive 
Engineers, 2003(2003-01-1827). 

218. Amano, T., Dryer, F. L., Effect of DME, NOx, And Ethane or CH4 Oxidation : 
High Pressure, Intermediate - Temperature Experiments And Modelling. Twenty 
Seventh International Combustion Symposium Proceedings, 1998: p. 397-404. 

219. Kong, S., A study of natural gas/DME combustion in HCCI engine using CFD 
with detailed chemical kinetics. Fuel, 2007. 86: p. 1483-1489. 

220. Zhao, F., Asmus, T., Assanis, D., Dec., J., Eng, J., Najt, P., ed. Homogeneous 
Charge Compression Ignition (HCCI) Engines: Key Research and Development 
Issues (PT-94). 2003, Society of Automotive Engineers: Warrendale, PA. 

221. Hsu, B., Practical Diesel-Engine Combustion Analysis. 2002, Warrendale, PA: 
Society of Automotive Engineers, Inc. 

222. Lewis, S., Storey, J., Bunting, B., Szybist, J., Partial Oxidation Products and 
other Hydrocarbon Species in Diesel HCCI Exhaust. Society of Automotive 
Engineers, 2005(2005-01-3737). 

223. Szybist, J., Bunting, B., Fuel Composition Impacts on Processes in Compression 
Ignition Engines, in Energy and Gep-Environmental Engineering. 2005, 
Pennsylvania State University: University Park. p. 179. 

224. Amneus, P., Mauss, F., Kraft, M., Vressner, A., Johansson, B., NOx and N2O 
formation in HCCI engines. Society of Automotive Engineers, 2005(2005-01-
0126). 

225. Pulkrabek, W., Engineering Fundamentals of Internal Combustion Engine. 1997, 
Upper Saddle River, New Jersey: Prentice Hall. 

226. Dagaut, P., Daly, C.,, The Oxidation and Ignition of Dimethyl Ether from Low to 
High Temperature (500 – 1600 K) : Experiments and Kinetic Modelling. 
International Combustion Symposium (27th), 1998: p. 361-369. 

227. Rosado-Reyes, C., Francisco, J., Szente, J., Maricq, M., Ostergaard, L., Dimethyl 
Ether Oxidation at Elevated Temperature (295-600K). J.Phys. Chem. A, 2005. 
109: p. 10940-10953. 

228. Dagaut, P., Daly, C., Simmie, J., Cathonnet, M. The Oxidation and Ignition of 
Dimethylether From Low to High Temperature (500-1600 K): Experiments and 
Kinetic Modeling. in International Combustion Symposium (27th). 1998: 
Combustion Institute. 

810



299 

 

229. Hori, M., Matsunaga, N., Marinov, N., Pitz, W., Westbrook, C., An Experimental 
and Kinetic Calculation of the Promotioin Effect of Hydrocarbons on the NO-
NO2 Conversion in a Flow Reactor. International Symposium on Combustion 
(27th), 1998: p. 389-396. 

230. Kee, R., Rupley, F., Miller, J., Chemkin-II:  A Fortran Chemical Kinetics 
Package for the Analysis of Gas Phase Chemical Kinetics. SANDIA REPORT - 
reprinted 1994 (Supersedes SAND89-8009, September 1989), 1994. SAND89-
8009B - UC-706: p. 127. 

231. Iida, N., Igarashi, T., Auto-ignition and Combustion of n-Butane and DME/Air 
Mixtures in a Homogeneous Charge Compression Ignition Engine. Society of 
Automotive Engineers, 2000(2000-01-1832). 

232. Amano, T., Dryer, F. Effect of Dimethyl Ether, NOx, and Ethane on CH4 
Oxidation: High Pressure, Intermediate-temperature Experiments and Modeling. 
in International Symposium on Combustion ( 27th). 1998: The Combustion 
Institute. 

233. Dec, J., Diesel combustion and emissions formation using multiple 2-D imaging 
diagnostics. Proceedings - Diesel Engine Emissions Reduction Workshop July 
1997, 1997(CONF - 970799): p. 269 - 273. 

234. Szybist, J., Boehman, A., Haworth, D., Koga, H., Premixed ignition behavior of 
alternative diesel fuel-relevant compounds in a motored engine environment. 
Combustion and Flame, 2007. 149: p. 112-128. 

235. Frenklach, M., Wang, H., Goldenberg, M., Smith, G., Golden, D., Bowman, C., 
Hanson, C., Gardiner, W., Lissianski, V., GRI-Mech-- An Optimized Detailed 
Chemical Reaction Mechanism for Methane Combustion. GRI Topical Report 
NO. GRI-95/0058, 1995. 

 
 
 

811



 

 

Appendix A 
 

TEOM Instrument File Configuration and User Configuration 

A.1 Instrument File Configuration 

Slot Primary Description 
Secondary 
Description Value 

0 Files Conversion File 1105 
1 Files User Config File 1105A 

2 Screens Instrument Title 
Series 1105 TEOM 
Monitor 

3 Screens Screen Divisions 5 
4 Hardware Calib Constant (K0) 14051 

5 Hardware 
MR/MC/TM Cycles 
(sec) 0.4194304 

6 Hardware An/Di Cycle (sec) 0.1048576 
7 Country Language English 

8 Country 
Print Code: 
Compress 015 

9 Country 
Print Code: Next 
Page 012 

10 Clipping Time Window (sec) 5 
11 Clipping In-Clip (0.0-0.5) 0.02 
12 Clipping Out-Clip (0.0-0.5) 0.02 
13 Default Resistance 51100 
14 Temp/Flow Constants Low Reference 0 
15 Temp/Flow Constants High Resistance 6 
16 Temp/Flow Constants T-Constant 1 8.267E-04 
17 Temp/Flow Constants T-Constant 2 2.090E-04 
18 Temp/Flow Constants T-Constant 3 8.090E-08 
19 Temp/Flow Constants Flow Rate Constant Flow Rate 1.00 
20 Counter Board Board Type 1 
21 Counter Board Base Address 768 
22 Analog-In Board Board Type 5 
23 Analog-In Board Channels 15 
24 Analog-In Board Base Address 784 
25 Analog-Out Board Board Type 5 
26 Analog-Out Board Channels 8 
27 Analog-Out Board Base Address 784 
28 Digital-In Board Board Type 0 
29 Digital-In Board Channels 0 
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30 Digital-In Board Base Address 0 
31 Digital-Out Board Board Type 5 
32 Digital-Out Board Channels 8 
33 Digital-Out Board Base Address 784 
34 Readings per Analog Input   12 
35 Short Numerical Display   120 
36 Numerical Display Window 01: Row 1L 83 
37 Numerical Display Window 02: Row 1M 84 
38 Numerical Display Window 03: Row 1R 85 
39 Numerical Display Window 04: Row 2L 116 
40 Numerical Display Window 05: Row 2M 124 
41 Numerical Display Window 06: Row 2R 119 
42 Numerical Display Window 07: Row 3L 90 
43 Numerical Display Window 08: Row 3M 88 
44 Numerical Display Window 09: Row 3R 89 
45 Numerical Display Window 10: Row 4L 120 
46 Numerical Display Window 11: Row 4M 122 
47 Numerical Display Window 12: Row 4R 123 
48 Numerical Display Window 13: Row 5L 173 
49 Numerical Display Window 14: Row 5M 174 
50 Numerical Display Window 15: Row 5R 177 
51 Numerical Display Window 16: Row 6L 117 
52 Numerical Display Window 17: Row 6M 118 
63 Numerical Display Window 18: Row 6R 0 
54 Numerical Display Window 19: Row 7L 0 
55 Numerical Display Window 20: Row 7M 0 
56 Numerical Display Window 21: Row 7R 0 
57 Numerical Display Window 22: Row 8L 0 
58 Numerical Display Window 23: Row 8M 0 
59 Numerical Display Window 24: Row 8R 0 
60 AK Protocol Station Number 052 
61 AK Protocol Channel Number 075048 
62 AK Protocol Append Codes 013010 
63 AK Protocol Baud Rate 9600 
64 AK Protocol Data Bits 8 
65 AK Protocol Stop Bits 1 
66 AK Protocol Parity 0 
67 AK Protocol Handshaking 0 
68 AK Protocol Serial Port 2 
69 Pres. Comp. (Yes=1/No=0)? 0 
70 Bypass(1)/Purge(0) Status   0 

71 
Warm-Up: Filter 
Change(secs)   60 

72 
Warm-Up: Initial 
Delay(secs)   900 

73 Collection Data Delay(secs)   120 
74 Robitrol Delay   0 
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A.2 User File Configuration 

Slot Primary Description Secondary Description Value 
0 X-Axis X-Axis Span (min) 6 
1 X-Axis X-Axis Format (code) 0 
2 On-Line Printing Printing Interval (sec) -300 
3 On-Line Printing Mode (0:no 1:Prt  2:Plt) 0 
4 On-Line Storage Disk Drive (A-Z) 6 
5 On-Line Storage Subdirectory ( name) ELANA 
6 On-Line Storage Storage Interval (sec) 10 
7 On-Line Storage Store Data (0:No 1:Yes) 1 
8 Y-Axis Default Left (0-10) 6 
9 Y-Axis Default Right (0-10) 7 
10 Averaging TM Calc (0:Ave 1:Exp) 0 
11 Averaging TM Time Window  (sec) 10 
12 Averaging MR/MC Time Window (sec) 10 
13 Settings Sample Flow Rate 3 
14 Settings Housing Temperature 50 
15 Settings Air Tube Temperature 50 
16 Settings Horiba MDT 0 
17 Settings Horiba MDT 0 
18 Settings External Tube Temp 50 
19 Flow Cont STP Temperature 25 
20 Transform Clip Data (0:No 1: Yes) 0 
21 Transform MR Conversion Factor 1 
22 Transform MC Converstion Factor 1 
23 Transform TM Conversioni Factor 1 
24 Printing Contents of Column 01 83 
25 Printing Contents of Column 02 84 
26 Printing Contents of Column 03 85 
27 Printing Contents of Column 04 88 
28 Printing Contents of Column 05 89 
29 Printing Contents of Column 06 122 
30 Printing Contents of Column 07 177 
31 Printing Contents of Column 08 0 
32 Disk Storage Contents of Column 01 83 
33 Disk Storage Contents of Column 02 84 
34 Disk Storage Contents of Column 03 85 
35 Disk Storage Contents of Column 04 88 
36 Disk Storage Contents of Column 05 122 
37 Disk Storage Contents of Column 06 177 
38 Disk Storage Contents of Column 07 0 
39 Disk Storage Contents of Column 08 0 
40 Analog Output Chan 1: Contents 83 
41 Analog Output Chan 1: Minimum Point -2.50E-07 
42 Analog Output Chan 1: Maximum Point 1.00E-06 
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43 Analog Output Chan 2: Contents 84 
44 Analog Output Chan 2: Minimum Point -2.50E+00 
45 Analog Output Chan 2: Maximum Point 22.5 
46 Analog Output Chan 3: Contents 85 
47 Analog Output Chan 3: Minimum Point 0.00E+00 
48 Analog Output Chan 3: Maximum Point 1.00E-04 
49 Serial Output Contents   83 
50 Key Assign F1: Contents| Units -116 | C 
51 Key Assign F1: Mimum Point 49.8 
52 Key Assign F1: Step 0.1 
63 Key Assign F2: Contents| Units -117 | C 
54 Key Assign F2: Mimum Point 49.8 
55 Key Assign F2: Step 0.1 
56 Key Assign F3: Contents| Units -118 | C 
57 Key Assign F3: Mimum Point 49.8 
58 Key Assign F3: Step 0.1 
59 Key Assign F4: Contents| Units -119 | C 
60 Key Assign F4: Mimum Point 44.8 
61 Key Assign F4: Step 0.1 
62 Key Assign F5: Contents| Units 83 |  g/s 
63 Key Assign F5: Mimum Point -2.50E-07 
64 Key Assign F5: Step 2.50E-07 
65 Key Assign F6: Contents| Units 84 | mg/m^3 
66 Key Assign F6: Mimum Point -2.50E-07 
67 Key Assign F6: Step 2.50E+00 
68 Key Assign F7: Contents| Units 85 | gms 
69 Key Assign F7: Mimum Point 0.00E+00 
70 Key Assign F7: Step 2.00E-05 
71 Key Assign F8: Contents| Units 88 |Hz 
72 Key Assign F8: Mimum Point 200 
73 Key Assign F8: Step 20 
74 Key Assign F9: Contents| Units 89 | SD 
75 Key Assign F9: Mimum Point 0.00E+00 
76 Key Assign F9: Step 1.00E+06 

77 Key Assign F10: Contents| Units 
-122 |  in. 
HG 

78 Key Assign F10: Mimum Point 0 
79 Key Assign F10: Step 5 
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Appendix B 
 

Biodiesel and Ultra Low Sulfur Diesel Fuel Specification Reports 

B.1 Biodiesel Fuel Specification 

 

Composition of Penn State B100 samples- Area % by GCMS 
       
 Sigma      
FAME Soy oil AGP #1 AGP #2    
16:0 10.2 10.7 10.6    
18:0 3.93 4.5 4.5    
18:1 20.62 22.6 22.8    
18:2 54.3 52.3 52.2    
18:3 8.36 7.4 6.8    
20:0 0.33 0.3 0.3    

 

Data provided on normal biodiesel samples from Mike Haas at the USDA. 

Sample 1 is from the barrel of fuel used in testing.  Sample 2 is from a barrel from the 

sample batch for comparison.  
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B.2 Hydrogenated Biodiesel Fuel Specification 
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B.3 BP 15 Ultra Low Sulfur Diesel Fuel Certificate of Analysis 

Certificate of Analysis 
Conoco BP-15 Diesel Fuel 
Issue date:  July 18, 2002 
RE: Conoco BP-15 Diesel Fuel 21071-70 
 

TEST TEST METHOD SPECIFICATION RESULT 

Cetane Index (calculated) ASTM D-976 report 48.8 
Cetane Number (engine rating) ASTM D-613  report 49.7 
Corrosion, Cu Strip, 3hr. @ 122°F ASTM D-130 report 1a 
Distillation, degrees F 

                      IBP 
                      T50                    
                      FBP 

ASTM D-86  
report 
report 
report 

 
330.3 
500.7 
653.9 

Dspecific Gravity @60°F ASTM D-4052 report .8374 
Polycyclic aromatic hydrocarbon 
Content, GC-SFC, wt% 

 report 6.9 

Carbon residue 
 

ASTM D-524 report % 
 

0.04 

Flash point Pensky Martin °F ASTM D-93 report 147 
Viscosity at 40°C cSt ASTM D-445 report 2.5 
Pour point °F              ASTM D-97 report  -0.4 

Cloud point °F ASTM D-5773 report  10.4 
Sulfur, Total ASTM D-2622 <15 ppm W 13 ppm W 

Lubricity, Boccle  Pass 
Lubricity, Boccle Fail 

 Report 
Report 

4200 
4500 
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CHAPTER 1 
 

INTRODUCTION AND MOTIVATION 

1.1 Motivation 

A current issue of energy concern is the world-wide shortage of petroleum-derived fossil 

fuels.  Given our heavy dependence on this precious resource, it is not surprising that a 

major priority for industries and governments has been to research alternative fuels and to 

improve energy efficiency.  Internal combustion engines for transportation vehicles are 

no exception, and a large amount of effort has been concentrated on the search for 

alternative, renewable fuels as well as more efficient combustion processes. 

 

One alternative to petroleum-derived hydrocarbon fuels is hydrogen.  Although 

consideration of hydrogen as a transport fuel is not new, there has been renewed interest 

in recent years because of its potential for near-unlimited availability and significantly 

lower levels of hazardous emissions (Error! Not a valid link.).   

 

With regard to new combustion processes, homogeneous-charge compression-ignition 

(HCCI) engines have been the focus of considerable research in the past several years.  

Attractive aspects of this technology include lower harmful oxides of nitrogen (NOx) and 

particulate matter emissions and high thermal efficiency. Drawbacks to HCCI include the 

lack of control over ignition timing often encountered.  This is an important issue due to 
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the role this plays both on the engine’s thermal efficiency as well as emissions.  As a 

result, restrictions are often placed on parameters such as equivalence ratio, intake 

temperature, and compression ratio in order to achieve favorable ignition times.  An 

additional disadvantage to HCCI is the typically high levels of hazardous hydrocarbon 

emissions such as carbon monoxide (CO) and other unburned hydrocarbons (UHC) 

(Error! Not a valid link.). 

 

Although much research effort has been devoted to the topics of hydrogen and HCCI 

individually, significantly less attention has been given to the study of their combined 

effects.  The use of hydrogen fuel in HCCI would, in theory, reduce the UHC and CO 

emissions to nearly zero, as the absence of carbon molecules in the fuel would effectively 

eliminate all carbon-based molecules from the combustion process.1  This fact makes 

hydrogen a very attractive fuel choice for HCCI, a combustion process typically 

associated with high CO/UHC emissions. 

 

In spite of these attractive features, a major problem arises in the difficulty with which 

pure hydrogen ignites via compression.  This often necessitates the increase of intake 

temperatures or compression ratios to unreasonably high values.  An additional drawback 

is the steep rate of pressure rise when hydrogen is compression-ignited.   

 

                                                 

1 In reality, this of course is not the case, as slight amounts of hydrocarbons from the oil in the engine 
cylinder would still yield small amounts of UHC. 
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1.2 This Thesis 

In this thesis, a computational approach is applied to investigate autoignition and NOx 

emissions for hydrogen-hydrocarbon fuel blends with air or air-EGR blends.  It is 

hypothesized that ignition timing might be controlled via a pilot injection of diesel fuel 

into a premixed hydrogen/air/EGR mixture. 

 

Two levels of modeling are applied:  a zero-dimensional time-dependant reactor model, 

and a three-dimensional time-dependant computational fluid dynamics (CFD) model.  

Because thermochemistry plays a crucial role in HCCI autoignition and NOx emissions, 

significant effort has been devoted to selection and validation of the chemical 

mechanisms for representative single-component hydrocarbon fuels and for NOx 

formation.   

 

The remainder of this thesis is organized as follows. 

 

In Chapter 2, a review of selected topics relevant to this thesis is presented.  Topics 

include general and diesel-based HCCI, hydrogen as an alternative to petroleum-derived 

fuels, NOx emissions, and numerical modeling. 

 

Chapter 3 provides more detailed information on each of the two modeling tools used in 

this thesis:  CHEMKIN and ACFluX.  The chemical mechanisms considered for future 

use with each of these numerical codes are introduced and compared here.  In addition, 
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the process by which these mechanisms were combined and modified is discussed and 

their accuracy confirmed. 

 

Chapter 4 details the zero-dimensional modeling of homogeneous n-heptane/air mixtures 

using CHEMKIN.  The chapter contains a description of the setup for this study as well 

as a discussion of the results, with particular attention given to the effects of various 

thermochemical parameters on ignition timing and NOx/CO emissions. 

 

In Chapter 5, an additional zero-dimensional study of homogeneous iso-octane/air/EGR 

mixtures is presented.  This study is an attempt to replicate a similar study conducted by 

Error! Not a valid link.) in which predicted NO2 levels exceeded those of NO. 

 

Chapter 6 outlines the three-dimensional time-dependant CFD study used to explore the 

effects of turbulence, inhomogeneities, and pilot injection on ignition timing and NOx/CO 

emissions.  A comparison of the zero- and three-dimensional models is made, and the 

results of the CFD study are presented in contrast to those obtained from CHEMKIN.  

Emphasis is placed on the control of ignition timing by varying the spray injection 

parameters. 

 

Finally, Chapter 7 summarizes the key findings of these studies and their significance.  In 

addition, suggestions for future work are made and discussed.  
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CHAPTER 2 
 

LITERATURE REVIEW 

The relevant literature on hydrogen as a transportation fuel, HCCI engines, and numerical 

simulation of HCCI combustion is reviewed. 

2.1 Hydrogen as a Transportation Fuel 

There are several advantages to the use of hydrogen as a transportation fuel over 

conventional fossil fuels.  Per unit mass, hydrogen stores about 2.6 times the amount of 

energy as gasoline.  While the gas tank in a typical automobile holds approximately 15 

gallons or 90 pounds of gasoline when full, a hydrogen tank containing the same amount 

of energy would weight just 34 pounds (Romm 2004). 

 

These facts tend to be misleading, and although hydrogen does hold more energy per unit 

mass than gasoline, it has a low volumetric energy density.  Hydrogen needs about 4 

times the amount of space as gasoline to contain the same amount of energy (Romm 

2004).  In the above example, the 34 pound hydrogen tank would occupy a space of 60 

gallons.  This presents one of the major hurdles in the conversion to a hydrogen fuel 

economy:  Much larger volumes of hydrogen are needed to achieve the same distances as 

conventional automobile engines (Cooper 2005).  Suggested methods of addressing this 

issue relate to storing hydrogen in various other chemicals, such as ammonia, and 

releasing pure hydrogen using a chemical catalyst, cryogenic compression, or the use of 

metal hydrides (Cooper 2005).  Metal hydrides are compounds which can be either liquid 
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or solids, considered to be easily adaptable to fueling scenarios and which have the 

ability to store and release hydrogen.  A drawback to this method is their high cost and 

large weight (Cooper 2005). 

 

An additional benefit to hydrogen as a transportation fuel is the lack of harmful products 

after combustion.  The only chemical product of complete combustion of hydrogen and 

oxygen is water; no CO or UHC is emitted as is the case with carbon-based fuels such as 

gasoline (Turns 2000).  In spite of this, emissions of nitrogen oxides are notably higher 

with hydrogen (Wong and Karim 2000). 

2.1.1 Hydrogen Production 

As the world’s most common chemical element, it would seem that hydrogen would be 

both an abundant and accessible resource.  In reality, hydrogen almost never occurs 

naturally in its diatomic state (Sperling and Ogden 2004), necessitating its production, 

often by costly or thermally inefficient processes.  One of the most common methods 

involves the combination of natural gas with steam over a catalyst (reaction given in 

Eq. 2.1).   Less effective methods include the electrolysis of water (Eq. 2.2) and the 

partial oxidation of various hydrocarbons with air.  These high-temperature reactions 

convert the hydrocarbons to a gas which can be further processed into pure hydrogen 

(Ogden 2004).  These reactions require significant amounts of energy however, and it is 

estimated that nearly 95% of hydrogen is currently produced by burning fossil fuels.  In 

accordance with the second law of thermodynamics, studies have suggested that current 
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methods consume as much or more fossil fuel than the hydrogen saves (Sperling and 

Ogden 2004).  For this reason, many in this field consider hydrogen to be an energy 

carrier rather than a true energy source (Ogden 2004). 

 

 

 

CH4 + H2O + energy CO + 3H2 * 2.1

 

2H2O + energy % 2H2 + O2 2.2

 

Additional possibilities for hydrogen production include the water-gas-shift reaction, 

given as, 

CO + H2O %  CO2 + H2, 2.3

 

which can occur at relatively low temperatures (~ 400 K).   In this reaction, the water 

vapor is stripped of its oxygen atom (Turns 2000).  Additional studies have found that

certain types of algae produce hydrogen via a form of photosynthesis when deprived of

sulfur (McAlister 2003). 

2.1.2 Fuel Cells versus Internal Combustion Engines 

An additional benefit to hydrogen is versatility, as it has applications in both internal 

combustion engines (ICEs) as well as fuel cells.  While hydrogen used in ICEs in much 

the same way as traditional fossil fuels, fuel cells which run on hydrogen convert 
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chemical energy contained in the molecules to electricity.  Similar to ICEs, fuel cells 

using hydrogen are also plagued by its low energy density, and therefore suffer similar 

problems with fuel tank size and storage.  Unlike ICEs, fuel cells have the potential for 

much greater efficiency.  Also unlike ICEs, however, the components used in the creation 

of fuel cells are extremely expensive and thus not yet practical for wide use (Romm 

2004).  Additionally, much of the research by automotive manufacturers currently 

focuses on light load fuel cell vehicles (Weiss et al. 2003). 

2.2 HCCI Engines 

The concept of HCCI engines (sometimes referred to as “controlled auto-ignition” 

engines) is a relatively new focus for combustion research and development.  The process 

can best be described as a hybrid combustion process which combines various aspects of 

traditional spark-ignition (SI) and diesel engines.  The incoming fuel-air mixture is 

premixed, which leads to reduced pollutant emissions. The mixture is ignited via 

compression, which leads to an increase in efficiency. 

 

In a typical HCCI engine process, a premixed homogeneous mixture (charge) of air and 

fuel is taken into the cylinder well before top dead center (TDC) and compressed to a 

point at which it auto-ignites.  This is achieved without any flame propagation and with 

reactions occurring at multiple points simultaneously (Kim and Lee 2005).  Typically, 

this process is very air rich (or fuel lean), resulting in lower in-cylinder temperatures and 
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pressures than other combustion processes.  The low NOx emissions associated with 

HCCI are a direct consequence of this fact. 

 

The ignition for the ideally homogenous case of HCCI is controlled primarily by 

chemical kinetics. This requires that the fuel chemistry be handled carefully and in great 

detail.  Extensive research has been conducted on the development of chemical 

mechanisms.  These mechanisms can vary in size from fewer than one hundred chemical 

reactions (Patel et al. 2004) to several thousand (Curran et al. 2002).   

 

In most cases, HCCI deviates from this ideal model, and small inhomogeneities exist 

within the charge.  This is most apparent in cases in which the fuel is introduced as a 

liquid.   

 

The premixed nature of the charge is similar to that of most gasoline-based engines 

currently in use and allows for reduced emissions of nitric oxides and other harmful 

particulate matter.  Since the charge is ignited via compression using high compression 

ratios, fuel efficiency comparable to diesel engines can be achieved. 

2.2.1 Diesel-Based HCCI Engines 

While much of the initial research on HCCI focuses on gasoline-based variations, the past 

decade has seen much interest in exploring the possibilities of a diesel-based alternative 

(Zhao et al. 2003).  Many of the advantages to diesel-based HCCI are most relevant to the 
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trucking industry, which uses diesel engines almost exclusively.  A shift to HCCI for this 

sector would be more likely if these heavy load vehicles could continue using the same 

fuel.  At these heavy load conditions, issues with controlling the combustion timing 

become even more of a detriment.  This requires the use of a more traditional combustion 

process at certain times during operation in order to maintain efficiency (Epping et al. 

2002).  Such a dual-mode system is more conveniently implemented using diesel-based 

HCCI than with other variations.   

 

Two major drawbacks exist with diesel-based HCCI.  Complications often arise with the 

proper vaporization of fuel, which requires temperatures higher than typically observed 

with HCCI.  This makes the formation of a premixed charge difficult.  Also, diesel fuel is 

known for its rapid auto-ignition at temperatures greater than 800 K (Kelly-Zion and Dec 

2000).  This becomes an additional factor adding to HCCI’s lack of ignition timing 

control.   

 

Diesel-based HCCI can be divided in three basic classifications:  premixed, early direct-

injection, and late direct-injection (Zhao et al. 2003). 

 

In the premixed group, the fuel/air charge is homogeneously mixed prior to intake.  An 

issue of concern here is the complete vaporization of the liquid fuel.  To properly 

vaporize and premix with the remaining in-cylinder gases, temperatures much greater 

than that of the intake conditions are sometimes required.  An additional concern is the 

problem of knocking at higher loads, creating even more difficulty in controlling the 
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combustion timing.  This in turn can lead to increased hydrocarbon emissions and 

unfavorable thermal efficiencies (Suzuki et al. 1998).  While some proposed solutions, 

such as injecting small amounts of additional fuel such as iso-octane (Suzuki et al. 1997) 

or methyl-tert-butyl ether (Suzuki et al. 1998) have been shown to offer slightly greater 

control over the combustion phasing of premixed HCCI, these serious issues make the 

practicality of this classification highly questionable in the absence of alternative means 

for premixing. 

 

Early direct-injection, as its name implies, is categorized by the injection of fuel at a time 

significantly earlier than TDC.  The injection of the fuel during the compression phase 

aids in the vaporization of the fuel as a result of higher in-cylinder temperatures.  The 

injection occurs sufficiently early enough so that the charge may become nearly premixed 

by the time combustion occurs.  This method uses lower intake temperatures, thus 

helping to prevent premature ignition, and is more compatible with currently used diesel 

engines (Epping et al. 2002). 

 

In the third classification, late direct-injection, fuel is injected much later than in 

traditional direct-injection diesels.  Typically, the injection timings are close to TDC and 

occur with large amounts of swirl to promote mixing and EGR to delay auto-ignition 

(Zhao et al. 2003).  This method offers the advantage of improved control over ignition 

timing.  One of the most successful implementations of late direct-injection is a technique 

developed by Nissan Motor Company called modulated kinetics (MK).  This method was 

outlined by Kimura et al. 1999) and Mase et al. 1998). 
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An additional means to improve timing control in diesel-based HCCI engines is the 

addition of water in the fuel/air mixture (Nishijima et al. 2002).   

2.2.2 Hydrogen in Diesel and HCCI Engines 

The use of pure hydrogen in HCCI engines has been successfully achieved, although the 

success is limited at best.  The use of hydrogen as the sole fuel in HCCI has been shown 

to further contribute to the problems of premature ignition.  Experiments conducted by 

Tang et al. (2002) have shown there to be a significant reduction in the torque and power 

output when operated under production conditions compared to those of currently used 

diesel engines. 

2.2.3 Current Issues in Diesel-Based HCCI 

While significant research effort is devoted to HCCI engines, much work is still required 

to sufficiently optimize the combustion process for use in the automotive sector.   

 

Significant performance issues associated with the HCCI combustion processes are in 

need of resolution.  These include the control of ignition timing, emissions of carbon 

monoxide, unburned hydrocarbons, and other harmful pollutants, as well as optimal 

operation at a wider range of load-speeds (Zhang and Haworth 2004).  In addition, the 

effects of turbulence on the combustion process have become an important concern.  The 
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influence of factors which cause the system to deviate from the homogeneous case have 

been shown to have a strong effect on the combustion process (Haworth 2005).  Even 

slight variations in species concentrations, temperature, or pressure can lead to drastic 

changes in the combustion regime.  Both numerical and experimental research is needed 

in order to sufficiently understand and predict the effects caused by even subtle changes. 

 

Finally, many components of HCCI engines used in laboratory settings are expensive and 

2.3 NOx Emissions in Diesel-Based HCCI Engines 

 is the amount of harmful 

custom made.  In order to effectively enter the automotive market, these components will 

need to be replaced or modified so as to be more favorable to mass production (Zhao et 

al. 2003). 

An area of concern in the design of any combustion system

emissions released as a result of the process.  In HCCI engines, harmful products include 

carbon monoxide (CO), unburned hydrocarbons (UHC), oxides of nitrogen (NOx), and 

particulate matter (PM).  Of these, significant effort is devoted to the reduction of NOx 

levels in automobile engines.  Both NO and NO2 are strong contributors to the production 

of ground-level ozone.  All of the above are known to be extremely damaging to lung 

tissue, causing inflammation, reduced lung function, respiratory illnesses, as well as 

aggravate existing conditions such as asthma (Mitchell 2001). 
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One of the most attractive features of HCCI combustion is the potential for reduced NOx 

emissions.  Conventional diesel or SI engines achieve ignition through the propagation of 

a flame, leading to higher in-cylinder temperatures (Amnèus et al. 2005).  At such 

temperatures, nitrogen atoms begin to break down and combine with oxygen and 

hydrocarbon radicals, leading to increased amounts of NO and NO2 (Amnèus et al. 2005).  

Although numerous chemical pathways for NOx formation have been proposed, it is 

generally accepted that the Zeldovich or “thermal” mechanism is in many cases the 

primary source (Turns 2000).  As this pathway is highly temperature dependant, a 

reduction in combustion temperatures can lead to a significant decrease in the amount of 

NOx created.  It has been proposed that the effects of this group of chemical reactions can 

be considered negligible at temperatures below 1800-1900 K (Turns 2000).  Since HCCI 

combustion processes normally run very fuel lean and without any flame propagation, the 

in-cylinder temperatures typically fall below this range and thermal NOx is no longer the 

most important NOx pathway.  However, other pathways generally consider negligible 

due to the effect of thermal NOx are especially important in HCCI. 

2.4 Detailed Chemistry HCCI Engine Modeling 

Chemical kinetics is one of the dominant factors controlling ideal HCCI combustion.  As 

a result, the simulation of the fuel oxidation should be handled with care and in great 

detail.  Throughout this thesis, two methods of numerical modeling were used, both of 

which approximate the complex effects of chemical kinetics on the combustion process.  

The first was a zero-dimensional HCCI engine model included as part of the CHEMKIN 
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4.0 software package (Reaction Design 2005).  The second was a detailed three-

dimensional computational fluid dynamics (CFD) model developed for the General 

Motors Company by Penn State researchers (Haworth 2005). 

2.4.1 Zero-Dimensional Modeling 

Reaction Design’s CHEMKIN chemical kinetics software was used for the numerous 

zero-dimensional tests discussed in this thesis.  The software package contains a built-in 

zero-dimensional closed-system IC engine model which simulates the auto-ignition of 

fuel-air mixtures via compression.  The program is designed to focus primarily on the 

chemical reactions’ impact on global engine parameters such as temperature and pressure 

in addition to the detailed chemistry of fuel oxidation.  A shortcoming of this model is its 

lack of ability to account for three-dimensional effects.  Additionally, the initial species 

are assumed to be premixed and remain perfectly homogeneous throughout the 

compression.  The model is a fixed-mass system, and cannot simulate valve 

opening/closing or fuel injection.   

 

The major advantage to this model is its speed.  Highly detailed chemical mechanisms, 

such as those provided by Lawrence Livermore National Labs [Curran et al. (1998), 

Curran et al. (2002), and Westbrook et al. (2002)], sometimes contain well over a 

thousand chemical species and several thousand reactions.  Even extremely large 

chemical kinetics files such as these may be run with relative ease and favorable 

computational times using CHEMKIN.  
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While speed is strength for many zero-dimensional models, accuracy and functionality 

often suffer as a result.  Such models operate very well for many simple cases, but are 

inherently limited in their capabilities and flexibility.  For instance, although CHEMKIN 

does contain a heat transfer model, it is minimal and does not allow for a great deal of 

customization.  Because the model is a fixed-mass system, the true intake and exhaust 

processes cannot be modeled.  Other scenarios such as fuel injection and spark ignition 

also cannot be modeled using most zero-dimensional codes.  In spite of their 

disadvantages, they remain excellent tools for the numerical approximation of simple 

processes and for the observation of trends in parametric studies.  A significant portion of 

the data presented in this thesis was obtained using the CHEMKIN software package. 

2.4.2 CFD Modeling 

Although the primary controlling mechanism of an ideal HCCI case is the 

thermochemistry, more practical cases necessitate the use of more robust physical 

models.  To explore the impact of turbulence, swirl, and inhomogeneities, a three-

dimensional model is required.  The effects of turbulence on the combustion chemistry, 

or turbulence/chemistry interactions (TCI), play an important role in both the combustion 

process and emissions (Zhang et al. 2005). 

 

Previous studies have shown that in cases with low in-cylinder swirl, TCI has little effect 

on ignition timing, but does a significant effect on emissions.  As the swirl level increases 

843



17 

and the charge becomes increasingly inhomogeneous, TCI becomes an important factor 

on both ignition timing and emissions (Zhang et al. 2005).  TCI has even been suggested 

as a major contributor to cases in which the level of NO2 in the exhaust is greater than the 

level of NO (Amnèus et al. 2005). 

 

Using a CFD model, it is possible to simulate many scenarios which less extensive 

models cannot address.  The effect of piston head or wall geometry on the fluid dynamics 

in the cylinder can be accounted for in CFD.  More complex cases such as fuel injection 

and intake/exhaust can also be simulated.  

 

Although many models are finite-volume (FV) based, some CFD models also have the 

potential to make use of probability density functions to describe the distribution of 

various quantities (Zhang et al. 2005).  Such a method allows for additional accuracy in 

complex computational analyses.  A probability density function (PDF) method assumes 

that certain variables in the computational domain randomly fluctuate as a function of 

their spatial locations.  Each cell or node has a specified probability to have a certain 

amount of each variable.  These functions typically remain constant throughout the 

model.  Using a PDF method, spatial variations of these variables are modeled with a 

reasonably light computational effort (Zhang et al. 2005). 

 

The primary drawback to using CFD models is the high computational cost often 

required.  Codes of this nature can take several hours or days for a single run, making 

large parametric studies a lengthy and unreasonable process. 
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2.5 Present Work 

This thesis explores a varied range of engine and fuel parameters under HCCI conditions 

in an effort to gain a better understanding of this combustion process.  Particular focus is 

given to the effect the variation of parameters such as thermochemical conditions, EGR 

levels, air/fuel ratios, and fuel types have on ignition timing and emissions.  The key role 

of chemical kinetics in HCCI combustion necessitates the careful comparison of chemical 

mechanisms, and a significant portion of the present work involves the testing, 

comparison, and validation of these mechanisms.   

 

The studies employ both zero- and three-dimensional models time-dependant models.  

Homogeneous fuel/air mixtures are considered as well as the direct in-cylinder late 

injection of fuel.   
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CHAPTER 3 
 

COMPUTATIONAL TOOLS 

The numerical simulation tools that have been used for this research are introduced in this 

chapter.  These fall into two categories:  zero-dimensional modeling and three-

dimensional CFD.   

3.1 Zero-Dimensional Modeling:  CHEMKIN 

Chemical kinetics is a dominant factor in controlling an ideal HCCI combustion process.  

Accordingly, the selection of appropriate chemical kinetics models is an important 

endeavor.  CHEMKIN is a chemical kinetics program created by Sandia National 

Laboratory which handles the complex chemical and thermodynamic considerations 

associated with various combustion processes.  This collection of software is one of the 

most widely used, and is well-suited to the tasks required in this study.  In this thesis, a 

commercial version [version 4.0, (Reaction Design 2005)] was used.  The program 

collects data from various input files used to describe the chemical reaction sets and 

thermodynamic properties.  The user is prompted for additional information including 

thermochemical conditions, global engine parameters, and other variables relevant to 

numerical modeling (such as time step or convergence criterion).  This information is 

used to simulate the effects of chemical kinetics on the combustion process as the reactor 

volume changes with time. 
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3.1.1 IC Engine Model 

CHEMKIN 4.0 includes a pre-programmed zero-dimensional internal combustion engine 

model (ICE), which was used to simulate the combustion process.  This model is a zero-

dimensional, fixed-mass, homogeneous, time-varying system and was previously known 

as “Aurora” in earlier versions of the code.  Flame propagation is not addressed in this 

model.  Global engine parameters such as compression ratio, displacement volume, and 

intake/exhaust valve opening/closing are specified by the user.  Intake conditions, such as 

temperature, pressure, and species mole fractions, are also user-specified.   

 

The major benefit to this model is its speed.  This allows for numerous cases to be run 

quickly with relatively little computational effort.  A major factor influencing the model’s 

speed is the size of the chemical mechanism (or gas-phase kinetics) file, with larger 

mechanisms corresponding to longer run times.  Typical mechanisms can range from a 

few dozen species to several thousand, and the time required for a typical run can range 

from a few seconds to a several hours.  In most cases, the run times are relatively short, 

making CHEMKIN an ideal tool for the parametric studies conducted in this thesis. 

3.1.1.1 Heat Transfer in the ICE Model 

CHEMKIN’s ICE model includes a skeletal convective heat transfer model of the form in 

Eq. 3.1, 
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)( wallconv TThAQ .+ , 3.1

 

where A is the surface area of the cylinder wall, Twall is the temperature of the cylinder, T 

is the temperature of the in-cylinder gases, and h is the convective heat transfer 

coefficient.  The value of h is based on the Nusselt number relation in Eq. 3.2,  
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where D is the engine bore, k is the thermal conductivity of the cylinder gases, Re and Pr 

are the Reynolds and Prandtl numbers respectively, and a, b, and c are user-specified 

constants.  The Reynolds number is given by in Eq. 3.3 , 

 

-
FwD

+Re , 3.3

 

where w is the average in-cylinder gas velocity, and ! and " are the gas density and 

viscosity respectively. 

 

Two options for approximating heat loss during the combustion process are available.  

The first is to specify the wall heat flux, Qconv, the rate at which heat is dissipated during 

the simulation.  This heat flux may be given a constant value or calculated at each time 

step using a user-defined function.   
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A second option involves the specification of the engine bore, a constant wall 

temperature, Prandtl number, and coefficients a, b, and c.  The wall heat flux is then 

calculated using Eqs. 3.1, 3.2, and Eq. 3.3 at each computational step. Additional 

flexibility in this convection scheme allows the user to calculate the average in-cylinder 

gas velocity using the Woschni Correlation (Heywood 1988) in order to obtain a more 

accurate Reynolds number.  This correlation, given by Eq. 3.4, is,  
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where vswirl is the swirl velocity, Sp is the mean piston speed, Vd is the volume displaced, 

Ti, pi, and Vi are the temperature, pressure, and volume of the working-fluid at some 

initial reference state, and p and pm are the instantaneous pressure and motored pressure 

respectively (Heywood 1988).  C11, C12, and C2 are constants determined by the flow 

regime. 

3.1.1.2 Limitations of the ICE Model 

The simple nature of CHEMKIN’s ICE model leads to several inaccuracies.  Perhaps 

most significant is the neglect of fluid dynamics and other multi-dimensional 

considerations.  Effects such as turbulence, inhomogeneities, and swirl have been shown 

to have a strong influence on the oxidation of the fuel, and several studies have been 
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devoted to turbulence/chemistry interactions (Zhang et al. 2005).  Additional problems 

arise from the assumption that the reactor is perfectly homogeneous at all times.  For an 

ideal case of HCCI, this is a decent approximation.  Large inaccuracies, however, can 

occur as the case deviates from this ideal, as is often observed.  The exclusion of these 

considerations has been shown to result in earlier ignition times and steeper rates of 

pressure rise when compared to more detailed 3-D models or experimental data.  As a 

fixed-mass system, additional restrictions are imposed on the capabilities of the model.  

CHEMKIN’s engine model is unable to model fuel injection or true intake/exhaust 

conditions.  And while heat loss is addressed with a bare-bones convective scheme, other 

important modes of heat transfer such as radiation are neglected, leading to great peak 

temperatures and earlier ignition.   

 

In spite of these noted shortcomings, the CHEMKIN model has been an extremely useful 

tool throughout this study.  Its speed is by far its greatest asset, allowing a large amount 

of data to be collected in a short amount of time.  While the accuracy of the results may 

be slightly lacking, the most important controlling factor of ideal HCCI combustion, the 

chemical kinetics, is adequately addressed.  So long as the chemistry of this process is 

properly handled, such a model may be considered an effective tool for the observation of 

trends in collected data. 
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3.1.2 Thermochemical Mechanisms 

Perhaps the most important requirement for the use of CHEMKIN is the gas-phase 

kinetics file, an input file containing information about various chemical elements and the 

ways in which they react with one another.  The file first defines the elements used, then 

the molecules (referred to as “species”) derived from these elements, and finally a list of 

global chemical reactions.  In addition to defining how the species interact and exchange 

elements, this file defines each reaction’s rate coefficients and their temperature 

dependence. 

 

The creation of a chemical mechanism is a tedious undertaking, and entire research 

projects are devoted solely to their design.  An attempt to independently fabricate a 

mechanism is well beyond the scope of this research, and it became necessary to rely on 

those which are available to the public. 

 

Numerous reliable gas-phase kinetics files are readily available.  These mechanisms are 

often unique to a particular fuel and specific range of thermodynamic conditions, and 

may not be as effective (or even usable at all) in cases which involve other fuel types or 

that operate outside of this range.  The files can contain fewer than thirty chemical 

species (Patel et al. 2004) or as many as several thousand (Curran et al. 2002).  The size 

of the mechanism files directly affects the time required of the computational model, with 

larger files requiring longer run times. 
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An additional component required for nearly all CHEMKIN modules is a thermodynamic 

file.  While the gas-phase kinetics file names each chemical species, the names are 

completely arbitrary.  It is in the thermodynamics file that the names are given meaning. 

Here, the elements that make up each species as well as its state (gas, liquid, or solid) and 

any electrical charge it may have are defined.  This file also describes how each species 

behaves based on the assumption that the various standard-state properties are functions 

of temperature.  A set of fourteen coefficients are provided which are used in polynomial 

curve fits to describe how temperature influences these properties.  A range of 

temperatures for which the polynomial fits are valid are provided at the top of the file.  

By using the heading “THERM,” the thermodynamic file may be included in the gas-

phase kinetics file instead of a separate document. 

 

Throughout the course of this research, it became necessary to combine mechanisms in 

order to model certain cases.  Many fuels such as n-heptane (C7H16) or iso-octane (C8H18) 

have numerous mechanisms of various sizes available.  However, most of them contain 

little or no nitrogen chemistry.  In these cases, nitrogen is treated as an inert gas, and does 

not dissociate into other species, making it impossible to model NOx formation and 

emissions.  In order to address this issue, a base mechanism was selected and the nitrogen 

chemistry of another mechanism added to it.  It was important for the new mechanism to 

be created in this way (as opposed to adding the fuel chemistry to the entire nitrogen 

chemistry mechanism) so that the oxidation of the fuel in question was correctly 

preserved.   
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The creation of a combined thermodynamic property file (or “thermo file”) is a much 

easier process compared to that of a combined gas-phase kinetics file.  One need only 

recall the species added to the original base mechanism and simply add the corresponding 

thermodynamic properties from the nitrogen thermo file to the base thermo file.  As with 

the chemical mechanism formation, it is generally a good idea to keep the thermo 

information of the base file when duplicate species information is encountered.   

 

A summary of the mechanism combination process is presented below. 

 

1. Select a base mechanism containing the oxidation chemistry for the desired fuel 
and a secondary mechanism containing the additional chemistry to be added to the 
base. 

2. Copy only the reactions involving the new chemistry (i.e. the nitrogen species) 
from the secondary mechanism and insert them into the base. 

3. Be sure that all species are named in caps everywhere in both the gas-phase 
kinetics file and the thermodynamic file.  This ensures conformity not only among 
various other mechanisms, but also with case-sensitive CFD codes. 

4. Add species not contained in the base mechanism but which are contained in the 
secondary mechanism to the base mechanism species list. 

5. Copy the species added above from the thermodynamics file of the secondary 
mechanism into the base thermodynamic file. 

6. Search for any duplicate reactions in the gas-phase kinetics file, and remove those 
which were copied from the secondary mechanism. 

7. Compare the new mechanism to the original base under the same operating 
conditions using a numerical model and observe the plots for temperature and 
pressure.  If these remain unaltered in any significant way, then the new 
mechanism can be considered reliable and ready for use. 
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3.1.2.1 Comparison of Ignition Timing 

The first step in the creation of a new mechanism is to select an existing one to serve as 

the “base.”  This base should be a previously designed mechanism specific to the desired 

fuel which has been deemed reliable.  In this study, largely concerned with the modeling 

of n-heptane, several mechanisms were considered.  The bulk of these came from either 

the University of Wisconsin’s Engine Research Center (UW-ERC) or Lawrence 

Livermore National Laboratories (LLNL). Table 3-1 contains a list of these mechanisms 

and information on their respective sizes.   

Figure 3-1 i temperature profiles of these mechanisms under the 

perating conditions given in Table 3-2.  These conditions were chosen to mirror those 

                                                

s a comparison of the 

o

presented in a study conducted by Zhang et al. (2004). 

 

 

Table 3-1:  List of n-heptane mechanism properties and references. 

Mechanism Species Reactions Run Time 
(seconds)2

UW-ERC (Patel et al. 2004) 29 52 6 
UW-ERC (Patel et al. 2004) 40 165 9 
LLNL (Seiser et al. 2000) 1 659 770 5 
LLNL (Curran et al. 2002) 561 2539 288 
LLNL (Curran et al. 2002) 4 91034 236 60  

 

2 These approximate run times correspond to a computation through a single engine cycle on the Cambrian 
PC (cambrian.perc.psu.edu), a Linux-based 2.0 GHz Intel system.  Each of these mechanisms was tested 
using CHEMKIN 4.0 under the operating conditions specified in Table 3-1. 
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Table 3-2:  Thermochemical conditions and global engine parameters used for n-heptane 
mechanism comparison tests. 

Compression Ratio: 15:1  
Cylinder Displacement Volume: 1600 cm3 

Conn. Rod to Crank Angle Ratio: 3.7143  
Bore: 12.065 cm 

Stroke: 14.0 cm 
Speed: 1000 rpm 

Starting Crank Angle: -146 deg ATDC 
Ending Crank Angle: 141 deg ATDC 
Intake Temperature: 300 K 

Intake Pressure: 100 kPa 
Heat Transfer Model: adiabatic 

Fuel: n-heptane 
Equivalence Ratio: 0.3731 
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Figure 3-1: Comparison of various n-heptane mechanisms under the operating conditions 
in Table 3-2. 
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There are significant differences among the various oxidation mechanisms. While the 

peak temperatures are similar, ignition timing varies by as much as ten crank angle 

degrees (CAD). These variations become even more pronounced in higher temperature 

regimes. 

 

Figure 3-2 suggests that the 40-species mechanism from the University of Wisconsin’s 

Engine Research Center conforms better to the much larger Livermore mechanisms 

[(Seiser et al. 2000) and (Curran et al. 2002)], particularly to the smallest of these.  Since 

the large size of the Livermore mechanisms makes them impracticable for later use in 

CFD, the 40-species UW-ERC mechanism has been adopted as the base n-heptane 

mechanism.  The small size would allow for favorable run times, particularly in CFD, 

while the compatibility to the larger Livermore mechanisms suggests an accurate 

modeling of the fuel oxidation. 

3.1.2.2 Comparison to Hydrogen Mechanism 

As the combustion of hydrogen plays a crucial role in this study, it was necessary to 

compare the UW-40 mechanism to an established hydrogen/air mechanism to ensure 

compatibility in that regard.  Using the conditions in Table Table 3-3, the UW-40 

mechanism was compared with a H2/O2 mechanism from Lawrence Livermore National 

Laboratories (Connaire et al. 2004).  The results of this comparison are presented in 

Figure 3-3. 
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Table 3-3:  Thermochemical conditions and global engine parameters used for hydrogen 
mechanism comparison tests. 

Compression Ratio: 18.7:1  
Cylinder Displacement Volume: 1600 cm3 

Conn. Rod to Crank Angle Ratio: 3.7143  
Speed: 1400 rpm 

Starting Crank Angle: 180 deg ATDC 
Ending Crank Angle: 450 deg ATDC 
Intake Temperature: 355 K 

Intake Pressure: 101.325 kPa 
Heat Transfer Model: adiabatic 

Fuel: hydrogen 
Equivalence Ratio: 0.3731  
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Figure 3-3:  Comparison of the 40 species UW mechanisms with Livermore H2/O2 
mechanism for hydrogen auto-ignition. 

The global engine parameters and other thermochemical conditions were slightly 

modified from those of the other tests presented in this chapter.  This was done to 
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promote the auto-ignition of hydrogen as means for an accurate basis of comparison.  The 

results verify that the UW-40 mechanism is indeed well-suited for the oxidation of 

hydrogen. 

3.1.2.3 Comparison of NOx Emissions Using Hybrid Mechanisms 

The nitrogen chemistry of one of three other mechanisms was added to the UW-ERC 

mechanism.  The first two came from the Gas Research Institute, GRI-Mech versions 

2.11 (Bowman et al. 2005) and 3.0 (Smith et al. 2005).  The third was taken from 

research conducted by Glarborg et al. (1998).  A comparison of these mechanisms is 

show in Table 3-4. 

Table 3-4: Basic properties of the hybrid n-heptane mechanisms. 

Hybrid Mechanism Base 
Mechanism NOx Mechanism Total 

Species 
Total 

Reactions 

UW40_GRI2.11 40 Species UW GRI-Mech 2.11 60 267 

UW40_GRI3.0 40 Species UW GRI-Mech 3.0 69 271 

UW40_Glarborg 40 Species UW Glarborg 71 375  
 

The resulting three mechanisms were compared using CHEMKIN, and the corresponding 

difference in NOx levels are shown in Figure 3-4.  

858



14 

It is apparent from the figure above that the three mechanisms are somewhat similar, 

although version 2.11 of GRI-Mech was selected for use in this research.  The primary 

reason for its selection was its favorable size.  Made up of only 20 chemical species, 

when combined with the base n-heptane mechanism it is the smallest of the three hybrids.  

Although this will not significantly affect the 0-D testing, a smaller mechanism will 

noticeably impact CFD, where even a slightly smaller mechanism can have a profound 

effect on the time required for each simulation.  An additional reason for selecting GRI-

Mech 2.11 is that this set of nitrogen chemistry seems to produce results which fall neatly 

in between those produced by the other two mechanisms.  It was determined that this 

middle value would be the best choice for the modeling of the nitrogen chemistry. 
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Figure 3-4: Comparison of NOx emissions of hybrid n-heptane mechanisms under the 
operating conditions given in Table 3-2. 
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3.1.2.4 Validation of Hybrid Mechanism 

Before using a hybrid mechanism in further studies, it is desirable to ensure that the 

addition of additional species and reactions did not alter the chemistry of the base 

mechanism.  The base mechanisms before and after the additional chemistry was added 

were compared, with the results shown in Figure 3-5.  The operating conditions for this 

case are once again those in Table 3-2. 
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Figure 3-5: Comparison of the 40 species UW mechanisms before and after addition of 
nitrogen chemistry of GRI-Mech version 2.11.  

The figure above verifies that the additional nitrogen chemistry did not significantly alter 

the base mechanism, justifying the use of the hybrid mechanism for additional testing.  
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3.2 Three-Dimensional CFD:  ACFluX 

To account for the effects of fluid dynamics, a more detailed computational tool becomes 

necessary.  Since conditions such as turbulence and swirl are inherently multi-

dimensional in nature, an appropriate model must, in addition to chemical kinetics, be 

able to handle calculations in spatial variations as well as time. 

 

The primary tool employed for this task was ACFluX (Haworth 2005), a three-

dimensional time-varying finite volume code capable of complex CFD modeling.  This 

code is able to simulate additional aspects of an actual engine such as fuel injection and 

valve opening/closing.  The code makes employs gas-phase kinetics and thermodynamic 

files in a similar format to those used with CHEMKIN to model chemical kinetics.    

3.2.1 Basic Numerical Algorithm 

Finite volume (FV) codes break down the physical space into tiny pieces with constant 

properties throughout.  A collection of these volumes is referred to as a “mesh” or 

“computational domain.”  A mesh which contains a large number of volumes is said to be 

fine.  While finer meshes are generally more accurate, they are also more computational 

intense.  ACFluX is provided with information as to the makeup of meshes via user-

created input files.  Within this computation domain, the governing equations for 

turbulent flow, species concentration and energy are simultaneously solved using a FV 

method.   
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3.2.2 Physical Models 

The code employs numerical models used to simulate various physical processes such as 

heat loss, mixing, or fuel injection.  Several of these are briefly described here. 

 

The heat transfer model employed by ACFluX is a convective scheme similar to that of 

CHEMKIN.  Although this convective scheme offers slightly greater flexibility, the 

calculations are fundamentally the same, and are based on either a constant wall 

temperature or a specified heat flux.  Heat transfer is especially important in any multi-

dimensional engine model, as any heat loss through the cylinder will lead to temperature 

gradients within the combustion chamber.  These inhomogeneities in temperature can 

have an important effect on chemical kinetics as well as fluid dynamics. 

 

ACFluX also contains a two-phase flow model for fuel injection.  This spray model 

attempts to simulate droplets of liquid fuel as they are injected into the cylinder and 

vaporize to a gas.  Collisions between droplets and the hydrodynamic effect of their 

introduction into the system are predicted using additional numerical models.  The 

location of the spray nozzle, the fuel type, fuel mass droplet velocity, particle density, and 

injection timing can all be customized.  Although relatively little is understood about fuel 

atomization and droplet collisions, current research suggests that a better understand of 

these physical processes will have a drastic impact on engine design (Drake and Haworth 

2006). 
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The turbulence model used in ACFluX is a standard k-epsilon flow model.  The partial 

differential equations used to mathematically describe turbulence are solved using 

Reynolds-averaged simulation (RAS), a reliable method employed in CFD for nearly 30 

years (Drake and Haworth 2006). 

 

The importance of turbulence/chemistry interactions has been well established in recent 

studies (Zhang et al. 2005).  These effects are often handled using probability density 

functions.  A probability density function (PDF) method assumes that certain variables in 

the computational domain fluctuate as a function of their spatial locations.  Each volume 

in the mesh has a specified probability to have a given value for each variable.  These 

functions typically remain constant throughout the model.  Using a PDF method, spatial 

variations of these variables are modeled with a reasonably light computational effort 

(Zhang et al. 2005). 
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CHAPTER 4 
 

HOMOGENEOUS AUTOIGNITION OF N-HEPTANE-H2/AIR MIXTURES 

Two series of zero-dimensional tests were conducted.  In the first, all thermochemical 

conditions and global engine parameters were held constant while the equivalence ratio 

and fuel composition (the % of H2 in the C7H16/H2 fuel mixture) were varied.  In the 

second series, the ignition timing was fixed, first at approximately top dead center (TDC), 

then at approximately 4° before top dead center (BTDC).  The desired ignition time was 

achieved for each case by varying the inlet temperature.  In all cases in this chapter, the 

fuel was an n-heptane/hydrogen blend.  Unless otherwise noted, all cases were run 

adiabatically.  The UW40_GRI2.11 hybrid n-heptane/NOx mechanism described in 

Section 3.1.2.3  was used for all cases.  The results presented here focus on ignition 

timing and emissions. 

4.1 Thermochemical Conditions 

The parameters used in the CHEMKIN ICE model are discussed in this section. 

4.1.1 Engine Operating Conditions 

Global engine parameters and initial thermochemical conditions were modeled after those 

specified in Zhang et al. (2005).  Table 4-1 summarizes the conditions used in the first 

series of tests. 
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Table 4-1: Conditions used for the first series of CHEMKIN tests. 
Engine Cylinder Displacement Volume: 611.74 cm3 

Compression Ratio: 16.55  
Engine Speed: 1 800.0 rpm 
Inlet Pressure: 100.0 kPa 

Inlet Temperature: 380.0 K 
Exhaust Gas Recirculation (EGR): 0%  

Conn. Rod/Crank Radius Ratio: 10 000.0  
Inlet Valve Close: -146.0 deg ATDC 

Exhaust Valve Open: 141.0 deg ATDC  

4.1.2 Stoichiometry 

The global reaction corresponding to complete combustion of a stoichiometric C7H16-

H2/air mixture can be written on a per-unit-mole-of-fuel basis as,   

 

(1 – x)C7H16 + xH2 + a#=1(O2 + 3.76N2) %  
7(1 – x)CO2 + [8(1 – x) + x]H2O + 3.76aN2, 

4.1

 

where x is the number of moles of H2 per mole of fuel mixture (0 ' x ' 1).   An oxygen 

balance yields, 

 

xxxxa
2
2111

2
1)1(4)1(71 .+(.(.++" . 4.2

 

For nonunity equivalence ratios, the left-hand side of Eq. 4.1 can be written as, 
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 (1 – x)C7H16 + xH2 + a(O2 + 3.76N2), 

4.3

where,  

"
.

+
"

+ +" xaa 5.10111 . 4.4

 

For reference, key thermochemical properties of H2 and C7H16 are provided in Table 4-2. 

 

Table 4-2: Fuel thermochemical properties (Turns 2000). 

Molecular Weight of H2 ( ):
2HMW 2.016 kg/kmol 

Molecular Weight of C7H16 ( ):
167HCMW 100.203 kg/kmol 

Lower Heating Value of H2 ( ):
2HLHV 120.500 MJ/kg 

Lower Heating Value of C7H16 ( ):
167HCLHV 44.926 MJ/kg 

4.2  Parametric Study:  Fixed Initial Conditions 

In the first series of tests, the equivalence ratio, #, was varied from # = 0.20 to # = 1.00.  

The amount of hydrogen contained in the fuel on a molar basis, x, was varied from x = 

0.00 to x = 0.95 for each equivalence ratio.  Unless otherwise noted, all tests were run 

using the thermochemical conditions specified in Table 4-1. 

4.2.1 Effect on Temperature and Ignition Delay 

Figure 4-1 shows that peak temperatures increase with increasing hydrogen content in the 

fuel and with increasing equivalence ratio.  The peak temperature is more sensitive to 
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changes in the equivalence ratio than to changes in hydrogen fuel concentration.  This 

suggests that a given #, fuel composition should have a relatively small effect on NOx 

emissions, except perhaps at very low equivalence ratios where peak temperatures are 

close to the 1700 – 1800 K thermal NO threshold. 
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Figure 4-1: Effect of equivalence ratio, #, and hydrogen fuel concentration, x, on peak 
temperature. 

 
 

In spite of the increase in peak temperature with increasing hydrogen content, ignition 

delay increases with increasing hydrogen content (Figure 4-2), especially at very high H2 

levels (90% - 95%).  Note that the ignition timings in Figure 4-2 all correspond to 
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overadvanced ignition compared to what would be desirable in a practical engine for 

diesel-based HCCI. 
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Figure 4-2: Effect of fuel composition on ignition timing for # = 0.25. 

4.2.2 Effect on Emissions 

Figure 4-3 shows UHC emissions for # = 0.25 with variations in hydrogen fraction (x).  

The values shown are mole fractions at 141° ATDC (exhaust valve opening).  By that 

time, the mole fractions are essentially frozen. As expected, the amount of UHC 

decreases as the amount of hydrogen contained in the fuel increases.  The reduction 

increases rapidly for mixtures containing greater than 75% hydrogen. 
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Figure 4-3: UHC emissions versus H2 fuel content, x, for # = 0.25. 

Figure 4-4 shows emissions of CO, NO, and NO2 with variations in H2 content at # = 

0.25.  The CO trend follows that for UHC while NO and NO2 increase slightly with 

increasing x.  This probably is a result of the higher in-cylinder temperatures for higher x 

(Figure 4-1).  The operating conditions are those of Table 4-1. 
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Figure 4-4: Emission trends for various hydrogen fuel concentrations at # = 0.25. 

 

In general, it has been found that emissions vary weakly with x for fixed # (as shown in 

Figures 4-3 and 4-4 for # = 0.25), except at very high or very low x. 

 

The variations in emissions with equivalence ratio are more dramatic.  Figures 4-5 and 4-

6 show NO and NO2 emissions, respectively, as functions of # and x. 
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Figure 4-5: Effect of equivalence ratio and hydrogen fuel concentration on NO emissions.

 

In Figure 4-5, the NO level varies in a parabolic fashion with #, with the peak occurring 

at an equivalence ratio of approximately 0.75.  A similar trend is observed for the NO2 

emissions in Figure 4-6.  Both NO and NO2 peak at intermediate equivalence ratios (# ( 

0.5 for NO2, # ( 0.75 for NO).  This is clearly a chemical effect rather than a thermal 

effect, since temperature increases monotonically with the equivalence ratio (Figure 4-1). 
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Figure 4-6:  Effect of equivalence ratio and hydrogen fuel concentration on NO2 
emissions. 

 

The difference in # for peak emissions of NO versus NO2 may be related to the unusual 

emissions results described by Amnèus et al. (2005), where the NO2 levels surpassed the 

NO levels in some cases.  The computed NO2/NO ratios for a range of equivalence ratios 

and fuel compositions are plotted in Figure 4-7.  
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Figure 4-7:  Effect of equivalence ratio and hydrogen fuel concentration on NO2/NO 
ratio. 

 

Figure 4-7 shows that the hydrogen fuel concentration does not have a significant impact 

on the NO2/NO levels.  The figure also shows that levels of NO relative to NO2 increase 

as the equivalence ratio increases.  This is likely the result of higher peak temperatures 

leading to greater NO production via the Zeldovich mechanism (Turns 2000).  

 

A trend similar to that noted for NOx emissions was observed for CO emissions 

(Figure 4-8), with a peak occurring at # ( 0.75.   
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Figure 4-8:  Effect of equivalence ratio and hydrogen fuel concentration on CO 
emissions. 

4.3  Parametric Study:  Fixed Ignition Timing 

In the next series of tests, the ignition timing for each case was held at top-dead-center 

(TDC) by changing the intake temperature (Table 4-3 and Figure 4-9).  For this study, 

“ignition” is defined as occurring at the onset of the maximum rate of temperature rise (at 

times almost vertical) on a temperature vs. crank angle graph.  The remaining 

thermochemical properties and engine parameters were the same as those used in Section 

4.2 (Table 4-1). 
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Table 4-3: Inlet temperatures [K] for the TDC fixed ignition timing tests. 

H2 Fuel Concentration, x ! 
0.00 0.05 0.20 0.30 0.40 0.50 0.60 0.75 0.90 0.95 

0.20 375 350 343 342 340 340 340 340 345 355 
0.25 375 351 344 344 344 342 342 342 348 356 
0.30 377 352 347 346 344 344 344 344 348 356 

382 359 350 352 352 352 352 352 354 360 0.50 
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Figure 4-9: Graphical representation of Table 4-3: inlet temperatures used for the fixed 
ignition timing tests. 

 

In this series, combustion took place at extremely low temperatures (Figure 4-10), much 

lower than would be used in a practical HCCI engine.  In general, temperatures should be 

greater than 1500 K to ensure complete CO to CO2 conversion (De Zilwa and Steeper 
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2006), and significant unconsumed fuel may remain for very low temperatures.  For the 

cases presented here, at least 90% of the fuel was consumed.  As a consequence of 

extremely low in-cylinder temperatures, the NOx emissions are very low while UHC and 

CO are high.  While these marginal cases are of little direct practical interest for HCCI 

engines, they are of interest as we move towards control of HCCI using pilot injection 

and other means. 
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Figure 4-10: Temperature profiles for TDC fixed ignition timing (# = 0.50). 

 

Figure 4-11 compares the peak temperatures as the equivalence ratio and fuel 

composition are varied. 

876



14 

 

800

820

840

860

880

900

920

940

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
H2 Fuel Concentration, x

Pe
ak

 T
em

pe
ra

tu
re

 [K
]

phi = 0.20 phi = 0.25

phi = 0.30 phi = 0.50

Figure 4-11: Effect of H2 fuel concentration, x, on peak temperature for various # for the 
TDC fixed ignition timing simulations. 

 

In this case (fixed ignition timing), the peak temperature decreases with increasing 

hydrogen content at a fixed equivalence ratio.  That is because intake temperature was 

decreased with increasing hydrogen content for the range of x shown in Figure 4-11 to 

maintain fixed ignition timing.  This decrease has caused the lower peak temperatures 

shown in Figure 4-11. 

 

The CO emissions for fixed ignition timing follow trends similar to those observed earlier 

for fixed initial conditions.  Figure 4-12 shows that the fuel composition affects CO 

emissions primarily at very high or very low hydrogen concentrations. 
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S  

far been very low, and therefore n  actual HCCI engine, it was next 

esired to fix the ignition timing under conditions matching those of more practical HCCI 

ince the peak in-cylinder temperatures for the cases discussed in this section have thus

ot representative of an

d

processes.  Here, the ignition timing was fixed at approximately 4° BTDC (Figure 4-13) 

and peak temperatures fell mostly within the 1500 – 1700 K range (Figure 4-14).  A new 

set of engine operating parameters and thermochemical conditions (Table 4-4) was used, 

along with a new set of inlet temperatures (Table 4-5). 
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Figure 4-12: Effect of H2 fuel concentration, x, on CO emissions for various # for TDC 
fixed ignition timing. 
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Figure 4-13: Temperature profiles for 4° BTDC fixed ignition timing (# = 0.20). 
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Figure 4-14 Effect of H2 fuel concentration, x, on peak temperature for various # for the 
4° BTDC fixed ignition timing simulations. 

Table 4-4: Conditions used for second set of constant ignition timing simulations. 
Engine Cylinder Displacement Volume: 611.74 cm3 

Compression Ratio: 15.0  
Engine Speed: 1 800.0 rpm 
Inlet Pressure: 101.325 kPa 

Inlet Temperature: variable (Table 4-5) 
Exhaust Gas Recirculation (EGR): 0%  

Conn. Rod/Crank Radius Ratio: 10 000.0  
Inlet Valve Close: -180.0 deg ATDC 

Exhaust Valve Open: 135.0 deg ATDC  
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Table 4-5: Inlet temperatures [K] for the 4° BTDC fixed ignition timing tests. 

H2 Fuel Concentration, x ! 
0.00 0.05 0.20 0.30 0.40 0.50 0.60 0.75 0.90 0.95 
357 342 340 338 336 335 337 341 355 375 0.20 
348 332 330 328 0.25 32  5 330 330 334 348 373  

 

 
A comparison of Table 4-3 with Table 4-5 reveals that each of the fixed ignition timing 

series of tests both show decreasing inlet temperatures from 0.00 ' x ' 0.50, then 

increasing inlet temperatures shortly afterwards.  However, while the peak temperatures 

of the TDC ignition tests (Figure 4-11) are consistent with this, the peak temperatures for 

the 4° BTDC ignition tests (Figure 4-14) are not.  The peak temperatures in Figure 4-11 

continue to decrease with increasing x in spite of an increasing inlet temperature at higher 

H2 fuel concentrations.  The peak temperatures in Figure 4-14 begin to increase at x > 

0.50 in correlation with increasing inlet temperatures at these x values. 

 

The CO emissions for the 4° BTDC fixed ignition timing tests (not shown) were 

negligible compared (less than 10 ppm in all cases) to those from the TDC fixed ignition 

timing tests.  However, UHC emissions were significant for # = 0.20 (Figure 4-15).  This 

is likely due to the low burned gas temperatures observed after combustion that fail to 

consume these unburned particles during the expansion stroke.  The likelihood of this is 

further supported by the fact that UHC emissions are well below 0 ppm in all cases for # 

= 0.25, where the burned gas temperatures are significantly greater. 
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Figure 4-15:  Effect of H2 fuel concentration, x, on UHC emissions for # = 0.20 for 4° 
BTDC fixed ignition timing. 
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CHAPTER 5 
 

HOMOGENEOUS AUTOIGNITION OF ISO-OCTANE/AIR-EGR MIXTURES: A 
STUDY OF NOx EMISSIONS 

A second series of homogenous autoignition simulations was conducted to explore the 

effects of zero-dimensional modeling parameters on NOx emissions.  For conventional SI 

or diesel combustion process, the NO/NO2 ratio is typically much greater than unity.  

Amnèus et al. (2005) and others have shown that NO/NO2 ratios can be significantly 

lower than unity for HCCI engines.  Iso-octane was selected as the fuel here to more 

closely match the operating conditions in the Amnèus et al. study.    

5.1 Engine and Operating Conditions 

The global engine parameters are based on q Volvo TD100-series engine (Maigaard et al. 

2000) and are given in Table 5-1. 

Table 5-1: Input parameters used for iso-octane CHEMKIN tests. 
 Engine Cylinder Displacement Volume: 1 600.0 cm3 

Bore: 12.065 cm 
Crank Radius: 7.000 cm 

Connecting Rod: 26.000 cm 
Compression Ratio: 15.0 : 1  

Engine Speed: 1 000 rpm 
Intake Pressure: 100 000 Pa 

Intake Temperature: variable  
Equivalence Ratio: 0.35  

Exhaust Gas Recirculation (EGR): 0.00 - 6.20% 
Intake Valve Close: -146.0 deg ATDC 

Exhaust Valve Open: 141.0 deg ATDC 
convective scheme (section 5.4)  Heat Transfer Model: 
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5.2 Chemical Mechanism 

The base chemical mechanism used is a primary reference fuel (PRF) mechanism for n-

heptane/iso-octane oxidation developed by Lawrence Livermore National Laboratory 

(Curran et al. 2002).  The mechanism contains 1024 species in 3246 reactions.  The 

nitrogen chemistry of GRI-Mech 2.11 (Bowman et al. 2005) was added to this following 

the approach used in Section 3.1.2.4, resulting in a hybrid mechanism totaling 1052 

species and 4338 reactions.  Figure 5-1 verifies that the autoignition characteristics of the 

hybrid PRF_GRI2.11 mechanism remain indistinguishable from those of the base 

mechanism.  The thermochemical conditions for the mechanism validation test are 

similar to those given in Table 5-1, with an intake temperature of 410 K and an 

equivalence ratio of # = 0.3721.  Unlike n-heptane, iso-octane undergoes a single-stage 

ignition, and allows for the realization of practical ignition timings with relative ease. 
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5.3 Exhaust Gas Recirculation 

An additional parameter addressed in this series of tests is the use of exhaust gas 

recirculation (EGR).  This involves a specified quantity of the species contained in the 

exhaust of a combustion process being redirected to the intake of the next engine cycle.  

The amount is usually given as a percentage of the total intake mixture.  In this study 

EGR is specified on a percent molar basis.  EGR is used as a means to lower combustion 

temperatures and/or delay ignition timing, as the addition of these (mostly inert) species 
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Figure 5-1: Comparison of base PRF mechanism with hybrid PRF_GRI2.11 mechanism.
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inhibits the oxidation of the hydrocarbon fuel.  In practical engine applications, the 

exhaust gas is sometimes cooled before blending with the new air/fuel mixture.  

 

Although CHEMKIN does not have a direct method of implementing EGR, the 

simulation of this process is relatively straightforward.  Adding a portion of the species 

from the end of one simulated cycle to the initial conditions of the next cycle is one 

approach.  The challenge lies in determining the exact amount of each species.  An 

iterative scheme must be employed to properly predict EGR concentrations, since the 

addition of new species to the initial composition will alter the combustion process, 

resulting in new concentrations of products.  The temperature at which to introduce EGR 

must also be specified.  This process by which EGR was modeled is summarized below. 

 

1. Run a simulation without EGR. 

2. Copy the species mole fractions (exhaust gas composition) from the final time 

step of the output of this run. 

3. Multiply each of the initial fuel/air species mole fractions by one minus the 

desired molar percent of EGR.  Note that this is done only once, as the new fuel 

air species mole fractions will not change from iteration to iteration. 

4. Multiply each of the EGR species mole fractions from step two by the desired 

percent EGR. 

5. Use the new mole fractions obtained from steps three and four as the initial 

species concentrations for a new simulation.  Note that this effectively 

corresponds to cooling the EGR to the intake temperature. 
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6. Copy the species mole fractions from the final time step of the new run and 

compare them with the mole fractions of the previous run.  If a change of less 

than five percent is observed in all of the species, the iteration is complete and 

these species concentrations may be used as the actual EGR values.  If this is not 

the case, additional iterations are necessary.  Repeat steps four through six using 

new species mole fractions. 

 

Four to six iterations are typically needed for convergence.  A new set of iterations is 

necessary for each set of operating conditions. 

5.4 Heat Transfer Model 

Eq. 3.2 with a = 0.035, b = 0.8, and c = 0.0 (Amnèus et al. 2005) is used to compute wall 

heat transfer: 

 

 

0.08.0 PrRe035.0+E
k

hDNuh . 5.1

The heat transfer model is further specified by the approach used to calculate the average 

in-cylinder gas velocity, w, used in calculating the Reynolds number.  This is 

accomplished via the Woschni correlation (Section 3.1.1.1).  The constants used in 

Eq. 3.2 and Eq. 3.4 are listed in Table 5-2 and are based on those provided by Amnèus et 
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al. (2005).  Note that the values for C11, C12, and C2 are reduced from typical values [such 

as those presented in (Heywood 1988)] to match with those used in the Amnèus study. 

 

Table 5-2: Table of heat transfer constants used for iso-octane calculations. 
a: 0.035
b: 0.800
c: 0.000

C11: 0.760
C12: 0.103
C2: 0.000108

Swirl Ratio: 0.010
Tw: 450.0 K 

 

The values of the model constants in Table 5-2 have a strong influence on the heat loss 

during combustion, and often are adjusted to match numerical results with experimental 

data.  An example of the effect of the coefficient a is shown in Figure 5-2.  
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5.5  Parametric Study 

The purpose of this study was to explore the variation of the NO/NO2 ratio with intake 

temperature.  Using the conditions specified in Table 5-1, 0.00% EGR, and varying the 

intake temperature from 407 K – 415 K, a range of NO/NO2 ratios was captured 

(Figure 5-3). 
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Figure 5-2: Effect of convection heat transfer coefficient, a, on combustion. 
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Figure 5-3: Effect of intake temperature on NO/NO2 ratio and peak temperature. 

 

It is apparent from this figure that even small variations of intake temperature have a 

profound effect on the combustion process.  Computed NO2 exceeds NO at conditions 

corresponding to very low peak temperatures, below the 1500 K mark considered to be 

the cutoff for complete CO to CO2 conversion (Turns 2000).  The case having an intake 

temperature of 407.807 K (the third data point in Figure 5.3) was run again using 6.20% 

EGR.  This was done in an attempt to reduce the NO/NO2 ratio while maintaining peak 

temperatures above 1500 K.  While the results of this case (not shown) did confirm a 

decrease in the NO/NO2 ratio, the ratio still remained above unity.  
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Additional cases were run to explore the sensitivity of the NO/NO2 ratio to variations in 

engine operating conditions.  A case with an equivalence ratio of # = 0.3817, intake 

temperature of 415 K, cylinder wall temperature of 500 K, and 6.20% EGR showed 

comparable peak temperatures and ignition timings to those in the Amnèus et al. (2005) 

study.  Table 5-3 compares the approximate values from figures in this study with those 

captured using the CHEMKIN model.   

 

Table 5-3: Comparison of CHEMKIN model with Amnèus et al. (2005) study. 
Quantity Amnèus et al. CHEMKIN 

Peak Temperature [K] 1975 1957 
Ignition Timing [deg ATDC] 

 

Despite an agreement among ignition timing and peak temperature, NOx emissions values 

are significantly different between the two cases.  Three-dimensional effects such as 

turbulence and in-cylinder temperature inhomogeneities not captured by the zero-

dimensional model may be the cause of this discrepancy (Amnèus et al. 2005).  Another 

possibly was discussed by Bandaru and Turns (2000) in their study on turbulent jet 

flames.  Here, it was discovered that the rapid addition of cold air to combustion products 

can result in the promotion of high NO2/NOx ratios.  Cold air coupled with large amounts 

of mixing can lead to an increased production of HO2, a strong promoter of the NO to 

NO2 conversion pathway,  

 

10 10 
NO emissions [ppm] 3 9.32 
NO2 emissions [ppm] 14 0.37 

NO + HO2 % NO2 + H. 5.2
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This process is further enhanced when UHC or trace amounts of fuel molecules are 

present (Bandaru and Turns 2000).  This is the result of complex fluid dynamics that may 

occur during the exhaust process, and would not be captured with a zero-dimensional 

model. 
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CHAPTER 6 
 

CFD OF H2/AIR MIXTURES WITH N-HEPTANE PILOT INJECTION 

In this chapter, the three-dimensional CFD model AC-FluX was utilized to explore the 

control of ignition timing of hydrogen/air mixtures via the pilot-injection of a small 

amount of surrogate diesel fuel (n-heptane). 

6.1  Engine Configuration and Operating Conditions 

AC-FluX operates by drawing information from several user-edited input files.  These 

text files cover a wide breadth of information relating to engine parameters, 

thermochemical conditions, spray/valve conditions, physical model options, as well as 

controlling numerical parameters such as time step size and output printing.  Two 

principle types of output were used:  animation files and global output files.  The global 

output (or global diagnostics) files contain in-cylinder averaged values for various 

quantities including temperature, pressure, and species mole fractions, and is similar to 

output files obtained from CHEMKIN.  The much larger animation files, however, 

contain information for these same parameters in each of the three spatial dimensions for 

every time step.  The data used to generate the majority of the plots in this chapter was 

obtained from global output files. 
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6.1.1 Engine Configuration 

The engine geometry represents a generic bowl-in-piston diesel engine, including a top-

ring-land crevice (Figure 6-1).  The engine model does not include valves.  Fuel is 

injected using an eight-hole diesel injector; hence a 45° sector model has been used to 

reduce computational time.  There is no swirl.  The fuel injector position and orientation 

can be seen in Figure 6-1.  Global engine parameters are summarized in Table 6-1.  These 

parameters are based on a Volvo TD100-series diesel engine (Maigaard et al. 2000), 

although the engine bore and stroke have been modified slightly to maintain the correct 

compression ratio. 

 

Table 6-1: Global engine parameters for the CFD engine model. 
Engine Cylinder Displacement Volume: 1597.42 cm3 

Stroke: 27.50 cm 
Bore: 8.60 cm 

Connecting Rod: 26.00 cm 
Clearance: 1.25 cm 

Compression Ratio: 18.7 : 1 
Engine Speed: 1 400 rpm 

Intake Valve Close: 180 deg ATDC 
Exhaust Valve Open: 495 deg ATDC  
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6.1.2 Thermochemical Conditions 

The thermochemical conditions for the CFD tests were selected such that the 

homogeneous hydrogen/air mixture would be close to, but short of, the point of auto-

ignition in the absence of fuel injection.  CHEMKIN was used to scope out these 

conditions by varying the inlet temperatures for each equivalence ratio.  The inlet 

temperature values were selected based on the percentage of hydrogen fuel consumed.  

The first and third series of tests used inlet temperatures that corresponded to a hydrogen 

consumption of approximately 3 – 5%, while the second series used inlet temperatures 

that corresponded to a hydrogen consumption of less than 1%.  The results of this scoping 

study are presented in Tables 6-2 and 6-3.  In each of these tables, bold values represent 

those selected for the CFD runs.  Cells marked with a † correspond to values for the first 

 

  
Figure 6-1: Sector mesh used in CFD tests detailing injection from upper right corner. 
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and third series of simulations, while those marked with a ‡ correspond to those used for 

the second series.  For example, an inlet temperature of 355 K was used for the first 

series at an equivalence ratio of 0.20. 

Table 6-2: Peak temperatures obtained from the CHEMKIN scoping study. 

Peak Temperature [K] Inlet 
Temperature 

[K] ! = 0.20 ! = 0.25 ! = 0.30 ! = 0.35 ! = 0.40 

340 1013 1014 1015 1017 1018 
341    1020 1021‡ 
342   1021 1022‡ 1024 
343  1022 1024‡ 1025  
344 1023 1025‡ 1026 1028  
345 1026‡ 1027 1029 1031 1033 
346 1028     
347     1040 
348     1044† 
349 1037   1044†  
350 1039 1042 1044 1048 2269 
351   1048† 2099  
352  1048† 1052   
355 1054† 1819 2038   
357 1062     
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Table 6-3: Percentage of fuel consumed obtained from the CHEMKIN scoping study. 

Fuel Consumed [% by moles] Inlet 
Temperature 

[K] ! = 0.20 ! = 0.25 ! = 0.30 ! = 0.35 ! = 0.40 

340 0.43% 0.49% 0.57% 0.65% 0.74% 
341    0.75% 0.86%‡ 
342   0.75% 0.87%‡ 1.01% 
343  0.73% 0.86%‡ 1.02%  
344 0.71% 0.84%‡ 1.00% 1.20%  
345 0.81%‡ 0.97% 1.17% 1.43% 1.77% 
346 0.93%     
347     2.92% 

 

Table 6-4 specifies additional thermochemical conditions utilized for the CFD study.  

Equivalence ratios were chosen to be representative of practical HCCI values, and the 

inlet temperatures were selected according to the process described above.  The heat 

transfer model employed used standard wall functions (Section 3.1.1.1) with a specified 

constant cylinder wall temperature.  The heat transfer model used for the CHEMKIN 

simulations was identical to that described in Section 5.4, with a constant wall 

temperature of 450 K.  

348     4.23%† 
349 1.46%   3.66%†  
350 1.72% 2.28% 3.21% 5.67% 100% 
351   4.39%† 100%  
352  3.62%† 7.10%   
355 5.06%† 100% 100%   
357 14.62%     
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Table 6-4: Thermochemical conditions used with the CFD model. 
Fuel: H2/C7H16 

Chemical Mechanism: Hybrid UW40_GRI2.11 Mech
Equivalence Ratio, ": 0.20 – 0.40 

Inlet Pressure, pi: 101 325 Pa 
Inlet Temperature, Ti: 340 – 355 K 

Cylinder Wall Temperature, Tw: 450 K 
Mass of C7H16 Injected, m: 1.49 - 2.98 mg 

Start of Injection, SOI: 330 – 355 deg ATDC 
Injection Duration, ): 5, 10, and 15 CAD 

6.2 CFD versus Zero-Dimensional Model 

To verify thermochemical consistency between the zero- and three-dimensional models, 

adiabatic autoignition was simulated using both models for identical thermochemical 

conditions (no pilot injection in the CFD).  For initially homogeneous reactants and 

adiabatic walls, results from 3D CFD should be very close to those obtained using a 0D 

adiabatic model.  There will be small differences because of flow effects on the CFD 

energy (enthalpy) equation. 

 

In Figure 6-2, the results of the zero-dimensional CHEMKIN model are compared with 

those from the more detailed CFD code.  The case shown here is for an equivalence ratio 

of # = 0.25, inlet temperature of 352 K, and other conditions as specified in Table 6-1.  
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Figure 6-2: Comparison of 0D and 3D models for # = 0.25. 

 Figure 6-2 shows that the hydrogen/air mixture did not auto-ignite, as desired, and 

results form the two models are very close (peak temperatures differ by ~16 K), with 

those from the 0D model being slightly higher.   

6.3 Premixed Reactants versus Fuel Injection 

Late direct in-cylinder injection of a small amount of liquid n-heptane can lead to global 

autoignition of a mixture that otherwise would not ignite.  When the n-heptane is 

premixed with the hydrogen/air charge, ignition does not occur under the conditions 

shown in Figures 6-3 and 6-4; moreover, the n-heptane/H2 fuel behaves the same as pure 

899



8 

H2 fuel for these conditions (Figure 6-4).  However, when the same amount of n-heptane 

(2.98 mg) is injected at 340° ATDC, ignition does occur (Figure 6-3). 
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Figure 6-3:  Comparison of premixed reactants versus fuel injection for the same total 

quantity of C7H16 and H2 fuels.  For the case of direct injection, SOI = 340 CAD, ) = 10 
CAD. 
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Figure 6-4: CFD comparison of premixed case and pure H2/air case for # = 0.25. 

 

The cases presented here included both the n-heptane fuel and the hydrogen in 

calculating the value of the equivalence ratios.  However, these values did not differ from 

those calculated using only the hydrogen, as the amount of n-heptane injected was very 

small (less than one part-per-billion in all cases). 

6.4 Control of Ignition Timing Using Pilot Injection 

With the models thus verified, we next explore the potential control of a diesel-based 

HCCI combustion process of H2/air mixtures via late direct injection of a small amount of 

liquid n-heptane.  Variations in start of injection (SOI), injection duration ()), mass of 
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fuel injected (m), and the proximity of the H2/air mixture to autoignition in the absence of 

injection were considered.  All results below were for cases of an equivalence ratio of # 

= 0.25, unless otherwise noted.  This value was chosen to match those of a practical 

HCCI engine, and results obtained at this value were typical of those at other equivalence 

ratios (not shown).  It was found that the ignition timing varied little as the equivalence 

ratio was changed. 

 

Inlet temperature (Ti) Set A (Table 6-5) was used for Sections 6.4.1 and 6.4.2, with 

values of Ti corresponding to a 3 – 5% (by moles) consumption of hydrogen in the 

absence of fuel injection (Table 6-3).  In Section 6.4.3, inlet temperature Set B was used, 

with values corresponding to less than 1% consumption of hydrogen (further from 

autoignition in the absence of pilot injection).   

Table 6-5: Inlet temperatures and corresponding fuel consumption. 

  
Inlet 

Temperature, 
Ti [K] 

% H2 Fuel 
Consumed 

Set A 355 5.06% ! = 0.20 
Set B 345 0.81% 
Set A 352 3.62% ! = 0.25 
Set B 344 0.84% 
Set A 351 4.39% ! = 0.30 
Set B 343 0.86% 
Set A 349 3.66% ! = 0.35 
Set B 342 0.87% 
Set A 348 4.23% ! = 0.40 
Set B 341 0.86% 
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6.4.1 Variation of Start of Injection, SOI 

The first parameter explored was the timing of the pilot injection.  Cases were limited to 

late direct-injection, similar to those described in Section 2.2.1.   Figure 6-5 shows the 

effect of three different SOI times on computed global in-cylinder temperatures.  
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Figure 6-5: Effect of SOI on ignition timing for ) = 10 CAD, m = 2.98 mg, and # = 0.25.

 

Ignition occurs approximately 15 CAD after SOI for SOI = 330 CAD, 10 CAD after SOI 

for SOI = 340 CAD, and 5 CAD after SOI for SOI = 350 CAD.  For SOI = 355 CAD (not 

shown), ignition did not occur.  The steady decrease in ignition delay as SOI is retarded is 

most likely a direct consequence of the increased temperature and pressure conditions in 

the cylinder at later crank angles.  The strong influence that SOI has on combustion 
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timing suggests that this parameter may be an effective means to control ignition timing 

in HCCI engines with pilot injection. 

 

Variations in SOI also influence the rate of pressure rise (Figure 6-6).   

While these pressure gradients do no  those desired in a practical HCCI 
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Figure 6-6:  Effect of SOI on global in-cylinder pressure for ) = 10 CAD, m = 2.98 mg, 
and # = 0.25. 

t correspond to

engine (“knocking” in the engine occurs when the rate of pressure rise reaches 8 – 12 

bar), it is interesting to note that the smallest value occurs when ignition is timed close to 

TDC. 
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6.4.2 Variation of Mass of Liquid Fuel Injected, m 

A second method that was explored to control combustion phasing was to vary the 

amount of liquid fuel injected.  Figure 6-7 compares the results of two different masses of 

n-heptane for the same overall equivalence ratio (# = 0.25). 
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Figure 6-7: Effect of m on temperature profile (SOI = 340 CAD, ) = 10 CAD). 

 

Peak temperature is higher for the higher injected fuel quantity, although the effect on 

ignition timing appears to be small.  A closer look (Figure 6-8) reveals a delay in ignition 

timing of approximately one crank angle degree along with a peak temperature reduction 

of approximately 200 K, with the reduced quantity of fuel injected.  A lower rate of 
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temperature rise is also observed; controlling the maximum rate of pressure rise is an 

important consideration in HCCI engines. 
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Figure 6-8: Expanded view of Figure 6-7 during autoignition.  

6.4.3 Variation of Proximity to Autoignition of the Homogeneous H2/Air Mixture 

Inlet temperatures corresponding to 3 – 5% hydrogen consumption in the absence of pilot 

injection were utilized in Sections 6.4.1 and 6.4.2.  Here, the inlet temperatures of the 

H2/air mixtures were decreased such that less than one percent of the hydrogen fuel was 

consumed during compression in the absence of pilot injection.  In Figure 6-9, two cases 

are compared for SOI = 330 CAD, and in Figure , two cases are compared for SOI = 6-10
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350 CAD.  Both cases have an injection duration of ) = 10 CAD and an injected fuel 

mass of m = 2.98 mg. 
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Figure 6-10:  Comparison of H2 fuel consumed for SOI = 350 CAD and # = 0.25. 

 

In both cases, a small delay in ignition timing and decrease in peak temperature are noted 

with the lower values of inlet temperature.  This is most likely the result of a decrease in 

inlet temperature of 8 K between the two cases (Table 6-5), and it is safe to assume that 

changing the fuel consumed in the homogeneous mixture has a negligible effect on the 

combustion timing. 
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6.5 Emissions 

 Emissions of NO and NO2 are shown in Figures 6-11 and 6-12, respectively.  As 

expected, values of both NO and NO2 decrease as the injection timing is advanced due to 

lower in-cylinder temperatures. 
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Figure 6-11: Effect of injection timing, SOI, on NO emissions for various # () = 10 CAD 
and m = 2.98 mg). 

 

909



18 

 

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

0.20 0.25 0.30 0.35
Equivalence Ratio, ! 

M
ol

e 
Fr

ac
tio

n 
N

O
2

SOI = 330 CAD
SOI = 340 CAD
SOI = 350 CAD

Figure 6-12:  Effect of injection timing, SOI, on NO2 emissions for various # () = 10 
CAD and m = 2.98 mg). 

 

The most interesting emissions results are those of CO (Figure 6-13).  Here, drastically 

greater CO levels are noted at SOI = 350 CAD.  In this case, ignition occurs at 

approximately 5° BTDC.  Liquid n-heptane continues to be injected as combustion 

occurs.  The high CO emissions may be the result of the chemistry occurring under these 

temperature/pressure conditions. 
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